D. Ladant, C. Brezin, J. M. Alonso, I. Crenon, and N. Guiso, Bordetella pertussis adenylate cyclase. Purification, characterization, and radioimmunoassay, J. Biol. Chem, vol.261, pp.16264-16269, 1986.
URL : https://hal.archives-ouvertes.fr/hal-02539736

V. Bouchez and N. Guiso, Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough, Pathog. Dis, vol.73, 2015.

A. A. Weiss and E. L. Hewlett, Virulence factors of bordetella pertussis, Annu. Rev. Microbiol, vol.40, pp.661-686, 1986.

D. Ladant and A. Ullmann, Bordatella pertussis adenylate cyclase: A toxin with multiple talents, Trends Microbiol, vol.7, pp.172-176, 1999.

J. C. Karst, V. Y. Ntsogo-enguene, S. E. Cannella, O. Subrini, A. Hessel et al., Calcium, acylation, and molecular confinement favor folding of bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form, J. Biol. Chem, vol.289, pp.30702-30716, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01408931

J. Masin, R. Osicka, L. Bumba, and P. Sebo, Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme

S. E. Cannella, V. Y. Ntsogo-enguene, M. Davi, C. Malosse, A. C. Sotomayor-perez et al., Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from bordetella pertussis
URL : https://hal.archives-ouvertes.fr/pasteur-01508525

D. Ladant, Interaction of bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains, J. Biol. Chem, vol.263, pp.2612-2618, 1988.

J. C. Karst, A. C. Sotomayor-perez, J. I. Guijarro, B. Raynal, A. Chenal et al., Calmodulin-induced conformational and hydrodynamic changes in the catalytic domain of bordetella pertussis adenylate cyclase toxin, Biochemistry, vol.49, pp.318-328, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512114

J. C. Karst, R. Barker, U. Devi, M. J. Swann, M. Davi et al., Identification of a region that assists membrane insertion and translocation of the catalytic domain of bordetella pertussis CyaA toxin, J. Biol. Chem, vol.287, pp.9200-9212, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01423063

O. Subrini, A. C. Sotomayor-perez, A. Hessel, J. Spiaczka-karst, E. Selwa et al., Characterization of a membrane-active peptide from the bordetella pertussis CyaA toxin, J. Biol. Chem, vol.288, pp.32585-32598, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00937043

T. Rose, P. Sebo, J. Bellalou, and D. Ladant, Interaction of calcium with bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes, J. Biol. Chem, vol.270, pp.26370-26376, 1995.

C. Bauche, A. Chenal, O. Knapp, C. Bodenreider, R. Benz et al., Structural and functional characterization of an essential RTX subdomain of bordetella pertussis adenylate cyclase toxin, J. Biol. Chem, vol.281, pp.16914-16926, 2006.

A. Chenal, L. Prongidi-fix, A. Perier, C. Aisenbrey, G. Vernier et al., Deciphering membrane insertion of the diphtheria toxin t domain by specular neutron reflectometry and solid-state nmr spectroscopy, J. Mol. Biol, vol.391, pp.872-883, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01151673

A. Chenal, J. C. Karst, A. C. Sotomayor-perez, A. K. Wozniak, B. Baron et al., Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin, Biophys. J, vol.99, pp.3744-3753, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01509576

S. Perez, A. C. Karst, J. C. Davi, M. Guijarro, J. I. Ladant et al., Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the bordetella pertussis adenylate cyclase toxin, J. Mol. Biol, vol.397, pp.534-549, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512116

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Calcium-induced folding of intrinsically disordered repeat-in-toxin (RTX) motifs via changes of protein charges and oligomerization states, J. Biol. Chem, vol.286, pp.16997-17004, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01508724

A. C. Sotomayor-perez, O. Subrini, A. Hessel, D. Ladant, and A. Chenal, Molecular crowding stabilizes both the intrinsically disordered calcium-free state and the folded calcium-bound state of a repeat in toxin (RTX) protein, J. Am. Chem. Soc, vol.135, pp.11929-11934, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01423043

D. P. O'brien, B. Hernandez, D. Durand, V. Hourdel, A. C. Sotomayor-perez et al., Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion, Sci. Rep, vol.5, 2015.

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Disorder-to-order transition in the CyaA toxin RTX domain: Implications for toxin secretion, Toxins, vol.7, pp.1-20, 2015.

L. Bumba, J. Masin, P. Macek, T. Wald, L. Motlova et al., Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts, Mol. Cell, vol.62, pp.47-62, 2016.

A. Rogel and E. Hanski, Distinct steps in the penetration of adenylate cyclase toxin of bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane, J. Biol. Chem, vol.267, pp.22599-22605, 1992.

P. Guermonprez, N. Khelef, E. Blouin, P. Rieu, P. Ricciardi-castagnoli et al., The adenylate cyclase toxin of bordetella pertussis binds to target cells via the alpha(m)beta(2) integrin (CD11b/CD18), J. Exp. Med, vol.193, pp.1035-1044, 2001.

S. R. Paccani, F. Finetti, M. Davi, L. Patrussi, M. M. D'elios et al., The bordetella pertussis adenylate cyclase toxin binds to T cells via lFA-1 and induces its disengagement from the immune synapse, J. Exp. Med, vol.208, 2011.

R. Osicka, A. Osickova, S. Hasan, L. Bumba, J. Cerny et al., Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3, vol.4, 2015.

D. Gonzalez-bullon, K. B. Uribe, C. Martin, and H. Ostolaza, Phospholipase a activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain, Proc. Natl. Acad. Sci, vol.114, pp.6784-6793, 2017.

I. E. Ehrmann, M. C. Gray, V. M. Gordon, L. S. Gray, and E. L. Hewlett, Hemolytic activity of adenylate cyclase toxin from bordetella pertussis, FEBS Lett, vol.278, pp.79-83, 1991.

R. Benz, E. Maier, D. Ladant, A. Ullmann, and P. Sebo, Adenylate cyclase toxin (CyaA) of bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with hlyA of Escherichia coli, J. Biol. Chem, vol.269, pp.27231-27239, 1994.

M. Basler, O. Knapp, J. Masin, R. Fiser, E. Maier et al., Segments crucial for membrane translocation and pore-forming activity of bordetella adenylate cyclase toxin, J. Biol. Chem, vol.282, pp.12419-12429, 2007.

J. Masin, A. Osickova, A. Sukova, R. Fiser, P. Halada et al., Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin, Sci. Rep, 2016.

M. Hackett, L. Guo, J. Shabanowitz, D. F. Hunt, and E. L. Hewlett, Internal lysine palmitoylation in adenylate cyclase toxin from bordetella pertussis, Science, vol.266, pp.433-435, 1994.

M. Hackett, C. B. Walker, L. Guo, M. C. Gray, S. Van-cuyk et al., Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in escherichia coli, J. Biol. Chem, vol.270, pp.20250-20253, 1995.

V. Havlicek, L. Higgins, W. Chen, P. Halada, P. Sebo et al., Mass spectrometric analysis of recombinant adenylate cyclase toxin from bordetella pertussis strain 18323/phsp9, J. Mass Spectrom, vol.36, pp.384-391, 2001.

T. Basar, V. Havlicek, S. Bezouskova, M. Hackett, and P. Sebo, Acylation of lysine 983 is sufficient for toxin activity of bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC, J. Biol. Chem, vol.276, pp.348-354, 2001.

J. Masin, M. Basler, O. Knapp, M. El-azami-el-idrissi, E. Maier et al., Acylation of lysine 860 allows tight binding and cytotoxicity of bordetella adenylate cyclase on CD11b-expressing cells, Biochemistry, vol.44, pp.12759-12766, 2005.

A. S. Otero, X. B. Yi, M. C. Gray, G. Szabo, and E. L. Hewlett, Membrane depolarization prevents cell invasion by bordetella pertussis adenylate cyclase toxin, J. Biol. Chem, vol.270, pp.9695-9697, 1995.

R. Veneziano, C. Rossi, A. Chenal, J. M. Devoisselle, D. Ladant et al., Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer, Proc. Natl. Acad. Sci, vol.110, pp.20473-20478, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01093165

J. E. Johnson and R. B. Cornell, Amphitropic proteins: Regulation by reversible membrane interactions (review)

, Mol. Membr. Biol, vol.16, pp.217-235, 1999.

R. B. Cornell and S. G. Taneva, Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties, Curr. Protein Peptide Sci, vol.7, pp.539-552, 2006.

D. Eisenberg, R. M. Weiss, and T. C. Terwilliger, The helical hydrophobic moment: A measure of the amphiphilicity of a helix, Nature, vol.299, pp.371-374, 1982.

M. Mihailescu, O. Soubias, D. Worcester, S. H. White, and K. Gawrisch, Structure and dynamics of cholesterol-containing polyunsaturated lipid membranes studied by neutron diffraction and NMR, J. Membr. Biol, vol.239, pp.63-71, 2011.

M. Mihailescu, R. G. Vaswani, E. Jardon-valadez, F. Castro-roman, J. A. Freites et al., Acyl-chain methyl distributions of liquid-ordered and -disordered membranes, Biophys. J, vol.100, pp.1455-1462, 2011.

R. Dawaliby, C. Trubbia, C. Delporte, C. Noyon, J. M. Ruysschaert et al., Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells, J. Biol. Chem, vol.291, pp.3658-3667, 2016.

R. M. Epand, Detection of hexagonal phase forming propensity in phospholipid bilayers, Biophys. J, vol.64, pp.290-291, 1993.

B. De-kruijff, Lipid polymorphism and biomembrane function, Curr. Opin. Chem. Biol, vol.1, pp.564-569, 1997.

G. E. Toombes, A. C. Finnefrock, M. W. Tate, and S. M. Gruner, Determination of L(alpha)-H(II) phase transition temperature for 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, Biophys. J, vol.82, pp.2504-2510, 2002.

S. H. White and W. C. Wimley, Membrane protein folding and stability: Physical principles, Annu. Rev. Biophys. Biomol. Struct, vol.28, pp.319-365, 1999.

K. Hristova and W. C. Wimley, A look at arginine in membranes, J. Membr. Biol, vol.239, pp.49-56, 2011.

A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto et al., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proc. Natl. Acad. Sci, vol.112, pp.3095-3103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01485547

S. H. White, W. C. Wimley, A. S. Ladokhin, and K. Hristova, Protein folding in membranes: Determining energetics of peptide-bilayer interactions, Methods Enzymol, vol.295, pp.62-87, 1998.

C. N. Pace and J. M. Scholtz, A helix propensity scale based on experimental studies of peptides and proteins, Biophys. J, vol.75, pp.422-427, 1998.

M. A. Sani and F. Separovic, How membrane-active peptides get into lipid membranes, Acc. Chem. Res, vol.49, pp.1130-1138, 2016.

Y. Su, T. Doherty, A. J. Waring, P. Ruchala, and M. Hong, Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from 13C, 31P, and 19F solid-state NMR, Biochemistry, vol.48, pp.4587-4595, 2009.

K. A. Schug and W. Lindner, Noncovalent binding between guanidinium and anionic groups: Focus on biological-and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues, Chem. Rev, vol.105, pp.67-114, 2005.

M. Tang, A. J. Waring, and M. Hong, Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR, J. Am. Chem. Soc, vol.129, pp.11438-11446, 2007.

Y. Su, S. Li, and M. Hong, Cationic membrane peptides: Atomic-level insight of structure-activity relationships from solid-state NMR, Amino Acids, vol.44, pp.821-833, 2013.

H. D. Herce, A. E. Garcia, J. Litt, R. S. Kane, P. Martin et al., Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides, Biophys. J, vol.97, 1917.

G. Tanaka, I. Nakase, Y. Fukuda, R. Masuda, S. Oishi et al., Cxcr4 stimulates macropinocytosis: Implications for cellular uptake of arginine-rich cell-penetrating peptides and HIV, Chem. Biol, vol.19, pp.1437-1446, 2012.

K. Lohner and S. E. Blondelle, Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics, Comb. Chem. High Throughput Screen, vol.8, pp.241-256, 2005.

N. Schmidt, A. Mishra, G. H. Lai, and G. C. Wong, Arginine-rich cell-penetrating peptides, FEBS Lett, vol.584, pp.1806-1813, 2010.

W. F. Bennett and D. P. Tieleman, The importance of membrane defects-lessons from simulations, Acc. Chem. Res, vol.47, pp.2244-2251, 2014.

A. Chenal, P. Nizard, and D. Gillet, Structure and function of diphtheria toxin: From pathology to engineering, J. Toxicol. Toxin Rev, vol.21, pp.321-359, 2002.

M. Galloux, H. Vitrac, C. Montagner, S. Raffestin, M. R. Popoff et al., Membrane interaction of botulinum neurotoxin a translocation (t) domain. The belt region is a regulatory loop for membrane interaction, J. Biol. Chem, vol.283, pp.27668-27676, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01187636

C. Varela-chavez, G. M. Haustant, B. Baron, P. England, A. Chenal et al., The tip of the four n-terminal alpha-helices of clostridium sordellii lethal toxin contains the interaction site with membrane phosphatidylserine facilitating small GTPases glucosylation, Toxins, vol.8, p.90, 2016.

C. Varela-chavez, S. Hoos, G. M. Haustant, A. Chenal, P. England et al., The catalytic domains of clostridium sordellii lethal toxin and related large clostridial glucosylating toxins specifically recognize the negatively charged phospholipids phosphatidylserine and phosphatidic acid, Cell. Microbiol, vol.17, pp.1477-1493, 2015.

A. Araye, A. Goudet, J. Barbier, S. Pichard, B. Baron et al., The translocation domain of botulinum neurotoxin a moderates the propensity of the catalytic domain to interact with membranes at acidic pH, PLoS ONE, vol.11, p.153401, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452079

N. Reig and F. G. Van-der-goot, About lipids and toxins, FEBS Lett, vol.580, pp.5572-5579, 2006.

C. Montagner, A. Perier, S. Pichard, G. Vernier, A. Menez et al., Behavior of the n-terminal helices of the diphtheria toxin t domain during the successive steps of membrane interaction, Biochemistry, vol.46, pp.1878-1887, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-01543204

A. Chenal, G. Vernier, P. Savarin, N. A. Bushmarina, A. Geze et al., Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: A case study of the effects of pH, calcium, lipid membrane curvature and charge, J. Mol. Biol, vol.349, pp.890-905, 2005.

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput, vol.4, pp.435-447, 2008.

S. J. Marrink, A. H. De-vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B, vol.108, pp.750-760, 2003.

S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De-vries, The martini force field: Coarse grained model for biomolecular simulations, J. Phys. Chem. B, vol.111, pp.7812-7824, 2007.

L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman et al., The martini coarse-grained force field: Extension to proteins, J. Chem. Theory Comput, vol.4, pp.819-834, 2008.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, vol.126, pp.14101-014107, 2007.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys, vol.81, pp.3684-3690, 1984.

T. Darden, D. York, and L. Pedersen, Particle mesh ewald: An n.Log(n) method for ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh ewald method, J. Chem. Phys, vol.103, pp.8577-8593, 1995.

W. Humphrey, A. Dalke, and K. Schulten, Vmd: Visual molecular dynamics, J. Mol. Graph. Model, vol.14, pp.27-28, 1996.

R. , R: A Language and Environment for Statistical Computing; R-Development-Core-Team, 2005.

H. Wickham and . Ggplot2, Elegant Graphics for Data Analysis, 2009.