*. Gillmaier, N. Gotz, A. Schulz, A. Eisenreich, W. Goebel et al., Important article showing for the first time the heterogenous nature of metabolic responses 369 of human primary monocytes to different TLR stimuli or whole-bacterial cell lysates, PLoS One, vol.370, issue.29, p.52378

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, and P. Cossart, Listeria monocytogenes 374 transiently alters mitochondrial dynamics during infection, Proc Natl Acad Sci U 375 S A, vol.108, pp.3612-3617, 2011.

W. Eisenreich, J. Heesemann, T. Rudel, and W. Goebel, Metabolic host responses to infection 377 by intracellular bacterial pathogens, Front Cell Infect Microbiol, 2013.

H. A. Saka and R. H. Valdivia, Acquisition of nutrients by Chlamydiae: unique challenges of 379 living in an intracellular compartment, Curr Opin Microbiol, vol.13, pp.4-10, 2010.

I. Hauslein, T. Sahr, P. Escoll, N. Klausner, W. Eisenreich et al., Legionella 381 pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid 382 metabolism, Open Biol, p.7, 2017.

S. Billig, M. Schneefeld, C. Huber, G. A. Grassl, W. Eisenreich et al., Lactate 384 oxidation facilitates growth of Mycobacterium tuberculosis in human 385 macrophages, Sci Rep, vol.7, p.6484, 2017.

M. J. Kim, H. C. Wainwright, M. Locketz, L. G. Bekker, G. B. Walther et al., , vol.387

W. Wang, F. F. Hsu, and U. Wiehart, Caseation of human tuberculosis granulomas 388 correlates with elevated host lipid metabolism, EMBO Mol Med, vol.2, pp.258-274, 2010.

V. Singh, S. Jamwal, R. Jain, P. Verma, R. Gokhale et al., Mycobacterium tuberculosis-390 driven targeted recalibration of macrophage lipid homeostasis promotes the 391 foamy phenotype, Cell Host Microbe, vol.12, pp.669-681, 2012.

X. Liu, R. Lu, Y. Xia, and J. Sun, Global analysis of the eukaryotic pathways and networks 393 regulated by Salmonella typhimurium in mouse intestinal infection in vivo, BMC 394 Genomics, vol.11, p.722, 2010.

K. Ding, C. Zhang, J. Li, S. Chen, C. Liao et al., cAMP Receptor 396 Protein of Salmonella enterica Serovar Typhimurium Modulate Glycolysis in 397 Macrophages to Induce Cell Apoptosis, Curr Microbiol, 2018.

S. D. Bowden, G. Rowley, J. C. Hinton, and A. Thompson, Glucose and glycolysis are required 399 for the successful infection of macrophages and mice by Salmonella enterica 400 serovar typhimurium, Infect Immun, vol.77, pp.3117-3126, 2009.

L. E. Sanman, Y. Qian, N. A. Eisele, T. M. Ng, W. A. Van-der-linden et al., , p.402

M. Bogyo, Disruption of glycolytic flux is a signal for inflammasome signaling and 403 pyroptotic cell death, vol.5, p.13663, 2016.

, Interesting paper showing how disruption of metabolic pathways by bacterial-induced piracy 405 of nutrients leds to inflammasome activation

P. Escoll, M. Rolando, and C. Buchrieser, Modulation of Host Autophagy during Bacterial 407 Infection: Sabotaging Host Munitions for Pathogen Nutrition, Front Immunol, vol.408, p.81, 2016.

J. Martinez, K. Verbist, R. Wang, and D. R. Green, The relationship between metabolism and 410 the autophagy machinery during the innate immune response, Cell Metab, vol.17, issue.411, pp.895-900, 2013.

J. C. Rathmell, Metabolism and autophagy in the immune system: immunometabolism 413 comes of age, Immunol Rev, vol.249, pp.5-13, 2012.

, Harris J: Autophagy and IL-1 Family Cytokines. Front Immunol, 2013.

T. C. Kunz, F. Viana, C. Buchrieser, and P. Escoll, Manipulation of Autophagy by Bacterial 416 Pathogens Impacts Host Immunity, Curr Issues Mol Biol, vol.25, pp.81-98, 2018.

M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima et al., Escape of 418 intracellular Shigella from autophagy, Science, vol.307, pp.727-731, 2005.

M. Rolando, P. Escoll, T. Nora, J. Botti, V. Boitez et al., Legionella pneumophila S1P-lyase targets host sphingolipid 421 metabolism and restrains autophagy, Proc Natl Acad Sci U S A, vol.113, pp.1901-422, 1906.

D. M. Shin, B. Y. Jeon, H. M. Lee, H. S. Jin, J. M. Yuk et al., Mycobacterium tuberculosis eis regulates autophagy, inflammation, and 425 cell death through redox-dependent signaling, PLoS Pathog, vol.6, 2010.

I. Tattoli, M. T. Sorbara, D. Vuckovic, A. Ling, F. Soares et al., , vol.427

D. J. Philpott and S. E. Girardin, Amino acid starvation induced by invasive bacterial 428 pathogens triggers an innate host defense program, Cell Host Microbe, vol.429, pp.563-575, 2012.

A. Choy, J. Dancourt, B. Mugo, T. J. O'connor, R. R. Isberg et al., The 431 Legionella effector RavZ inhibits host autophagy through irreversible Atg8 432 deconjugation, Science, vol.338, pp.1072-1076, 2012.

S. Steele, J. Brunton, and T. Kawula, The role of autophagy in intracellular pathogen 434 nutrient acquisition, Front Cell Infect Microbiol, vol.5, p.51, 2015.

H. Niu, Q. Xiong, A. Yamamoto, M. Hayashi-nishino, and Y. Rikihisa, Autophagosomes 436 induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular 437 infection, Proc Natl Acad Sci, vol.109, pp.20800-20807, 2012.

N. Werth, C. Beerlage, C. Rosenberger, A. S. Yazdi, M. Edelmann et al., , p.439

C. Eiff, K. Becker, and A. Schafer, Activation of hypoxia inducible factor 1 is a 440 general phenomenon in infections with human pathogens, PLoS One, pp.441-446, 2010.

A. J. Wolf, C. N. Reyes, W. Liang, C. Becker, K. Shimada et al., , p.443

K. M. Coggeshall and M. Arditi, Hexokinase Is an Innate Immune Receptor for 444 the Detection of Bacterial Peptidoglycan, Cell, vol.166, pp.624-636, 2016.

*. , Outstanding paper showing the immune surveillance function of the metabolic enzyme 446 Hexokinase. 447 55. Pukkila-Worley R: Surveillance Immunity: An Emerging Paradigm of Innate Defense 448 Activation in Caenorhabditis elegans, PLoS Pathog, vol.12, p.1005795, 2016.