N. R. Faria, M. Kraemer, and S. C. Hill, Genomic and epidemiological monitoring of yellow fever virus transmission potential, Science, vol.361, pp.894-899, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629326

M. Theiler and H. H. Smith, The use of yellow fever virus modified by in vitro cultivation for human immunization, J Exp Med, vol.65, pp.787-800, 1937.

J. D. Poland, C. H. Calisher, T. P. Monath, W. G. Downs, and K. Murphy, Persistence of neutralizing antibody 30-35 years after immunization with 17D yellow fever vaccine, Bull World Health Organ, vol.59, pp.895-900, 1981.

A. M. Watson, L. K. Lam, W. B. Klimstra, and K. D. Ryman, The 17D-204 vaccine strain-induced protection against virulent yellow fever virus is mediated by humoral immunity and CD4 + but not CD8 + T cells, PLoS Pathog, vol.12, p.1005786, 2016.

N. P. Lindsey, K. A. Horiuchi, and C. Fulton, Persistence of yellow fever virus-specific neutralizing antibodies after vaccination among US travellers, J Travel Med, vol.25, 2018.

R. De-menezes-martins, M. Maia, and S. De-lima, Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study, Vaccine, vol.36, pp.4112-4117, 2018.

M. Niedrig, M. Lademann, P. Emmerich, and M. Lafrenz, Assessment of IgG antibodies against yellow fever virus after vaccination with 17D by different assays: neutralization test, haemagglutination inhibition test, immunofluorescence assay and ELISA, Trop Med Int Health, vol.4, pp.867-871, 1999.

J. Deng, Y. Wei, V. R. Fonseca, L. Graca, and D. Yu, T follicular helper cells and T follicular regulatory cells in rheumatic diseases, Nat Rev Rheumatol, vol.15, pp.475-490, 2019.

S. Crotty, T follicular helper cell biology: a decade of discovery and diseases, Immunity, vol.50, pp.1132-1148, 2019.

J. E. Craft, Follicular helper T cells in immunity and systemic autoimmunity, Nat Rev Rheumatol, vol.8, pp.337-347, 2012.

R. Morita, N. Schmitt, and S. E. Bentebibel, Human blood CXCR5 + CD4 + T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion, Immunity, vol.34, pp.108-121, 2011.

E. Brenna, A. N. Davydov, and K. Ladell, CD4 + T follicular helper cells in human tonsils and blood are clonally convergent but divergent from non-Tfh CD4 + cells, Cell Rep, vol.30, issue.1, pp.137-152, 2020.

L. A. Vella, M. Buggert, and S. Manne, T follicular helper cells in human efferent lymph retain lymphoid characteristics, J Clin Invest, vol.130, pp.3185-3200, 2019.

A. Heit, F. Schmitz, and S. Gerdts, Vaccination establishes clonal relatives of germinal center T cells in the blood of humans, J Exp Med, vol.214, pp.2139-2152, 2017.

H. Ueno, Tfh cell response in influenza vaccines in humans: what is visible and what is invisible, Curr Opin Immunol, vol.59, pp.9-14, 2019.

C. G. Vinuesa, M. A. Linterman, D. Yu, and I. C. Maclennan, Follicular helper T cells, Annu Rev Immunol, vol.34, pp.335-368, 2016.

A. Aljurayyan, S. Puksuriwong, and M. Ahmed, Activation and induction of antigen-specific T follicular helper cells play a critical role in live-attenuated influenza vaccineinduced human mucosal anti-influenza antibody response, J Virol, vol.92, pp.114-132, 2018.

R. S. Akondy, P. Johnson, and H. I. Nakaya, Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination, Proc Natl Acad Sci, vol.112, p.3050, 2015.

M. Co, E. D. Kilpatrick, and A. L. Rothman, Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization, Immunology, vol.128, pp.718-727, 2009.

M. Kongsgaard, M. R. Bassi, and M. Rasmussen, Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination, Sci Rep, vol.7, p.662, 2017.

S. Kohler, N. Bethke, and M. Bothe, The early cellular signatures of protective immunity induced by live viral vaccination, Eur J Immunol, vol.42, pp.2363-2373, 2012.

J. D. Miller, R. G. Van-der-most, and R. S. Akondy, Human effector and memory CD8 + T cell responses to smallpox and yellow fever vaccines, Immunity, vol.28, pp.710-722, 2008.

M. Koutsakos, A. K. Wheatley, and L. Loh, Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity, Sci Transl Med, vol.10, p.8405, 2018.

M. Locci, C. Havenar-daughton, and E. Landais, Human circulating PD-1 + CXCR3-CXCR5 + memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses, Immunity, vol.39, pp.758-769, 2013.

S. E. Bentebibel, S. Lopez, and G. Obermoser, Induction of ICOS + CXCR3 + CXCR5 + T H cells correlates with antibody responses to influenza vaccination, Sci Transl Med, vol.5, pp.176-132, 2013.

E. A. James, R. E. Lafond, T. J. Gates, D. T. Mai, U. Malhotra et al., Yellow fever vaccination elicits broad functional CD4 + T cell responses that recognize structural and nonstructural proteins, J Virol, vol.87, pp.12794-12804, 2013.

K. Blom, M. Braun, and M. A. Ivarsson, Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector-to a memorytype response, J Immunol, vol.190, pp.2150-2158, 2013.

M. V. Pogorelyy, A. A. Minervina, and M. P. Touzel, Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins, Proc Natl Acad Sci, vol.115, pp.12704-12709, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974035

A. A. Minervina, M. V. Pogorelyy, and E. A. Komech, Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. eLife 2020, vol.9
URL : https://hal.archives-ouvertes.fr/hal-02496761

L. M. Snell, I. Osokine, D. H. Yamada, J. R. De-la-fuente, H. J. Elsaesser et al., Overcoming CD4 Th1 cell fate restrictions to sustain antiviral CD8 T cells and control persistent virus infection, Cell Rep, vol.16, pp.3286-3296, 2016.

K. J. Maloy, C. Burkhart, and T. M. Junt, CD4 + T cell subsets during virus infection. Protective capacity depends on effector cytokine secretion and on migratory capability, J Exp Med, vol.191, pp.2159-2170, 2000.

, The Authors, Ltd on behalf of Australian and New Zealand Society for Immunology, 2020.

S. E. Bentebibel, S. Khurana, and N. Schmitt,

+. Cxcr3-+, T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination, Sci Rep, vol.6, p.26494, 2016.

J. He, L. M. Tsai, and Y. A. Leong, Circulating precursor CCR7 lo PD-1 hi CXCR5 + CD4 + T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure, Immunity, vol.39, pp.770-781, 2013.

R. S. Herati, M. A. Reuter, and D. V. Dolfi, Circulating CXCR5 + PD-1 + response predicts influenza vaccine antibody responses in young adults but not elderly adults, J Immunol, vol.193, pp.3528-3537, 2014.

J. Zhang, W. Liu, and B. Wen, Circulating CXCR3 + Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients, Sci Rep, vol.9, p.10090, 2019.

O. Baiyegunhi, B. Ndlovu, and F. Ogunshola, Frequencies of circulating Th1-biased T follicular helper cells in acute HIV-1 infection correlate with the development of HIV-specific antibody responses and lower set point viral load, J Virol, vol.92, pp.659-677, 2018.

M. R. Bassi, M. Kongsgaard, and M. A. Steffensen, CD8 + T cells complement antibodies in protecting against yellow fever virus, J Immunol, vol.194, pp.1141-1153, 2015.

L. Rivino, M. Messi, D. Jarrossay, A. Lanzavecchia, F. Sallusto et al., Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4 + central memory T cells, J Exp Med, vol.200, pp.725-735, 2004.

T. R. Malek, The biology of interleukin-2, Annu Rev Immunol, vol.26, pp.453-479, 2008.

J. E. Huber, Y. Chang, I. Meinl, T. Kumpfel, E. Meinl et al., Fingolimod profoundly reduces frequencies and alters subset composition of circulating T follicular helper cells in multiple sclerosis patients, J Immunol, vol.204, pp.1101-1110, 2020.

G. Barba-spaeth, W. Dejnirattisai, and A. Rouvinski, Structural basis of potent Zika-dengue virus antibody cross-neutralization, Nature, vol.536, pp.48-53, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01408100