B. S. Marteyn, Shigella vaccine development : the model matters, JSM Trop Med Res, vol.1, pp.1011-1025, 2016.

L. D. Banish, R. Sims, D. Sack, R. J. Montali, L. Phillips et al., Prevalence of shigellosis and other enteric pathogens in a zoologic collection of primates, J Am Vet Med Assoc, vol.203, pp.126-158, 1993.

L. Black-schultz, R. W. Coatney, C. L. Warnick, and B. Swif, Lack of reactivation of shigellosis in naturally infected enrofloxacin-treated cynomolgus monkeys after exogenous immunosuppression, Lab Anim Sci, vol.47, pp.602-607, 1997.

J. H. Vickers, Infectious diseases of primates related to capture and transportation, Am J Phys Anthropol, vol.38, pp.511-524, 1973.

T. A. Collins, S. Barnoy, S. Baqar, R. T. Ranallo, K. W. Nemelka et al., Safety and colonization of two novel virG(icsA)-based live Shigella sonnei vaccine strains in Rhesus macaques (Macaca mulatta), Comp Med, vol.58, pp.88-94, 2008.

H. L. Dupont, M. M. Levine, R. B. Hornick, and S. B. Formal, Inoculum size in shigellosis and implications for expected mode of transmission, J Infect Dis, vol.159, pp.1126-1154, 1989.

M. S. Islam, M. K. Hasan, and S. I. Khan, Growth and survival of Shigella flexneri in common bangladeshi foods under various conditions of time and temperature, Appl Environ Microbiol, vol.59, pp.652-54, 1993.

J. Mestas and C. Hughes, Of mice and not men: differences between mouse and human immunology, J Immunol, vol.175, pp.2731-2769, 2004.

J. Gorden and P. Small, Acid resistance in enteric bacteria, Infect Immun, vol.61, pp.364-67, 1993.

T. T. Kararli, Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals, Biopharm Drug Dispos, vol.16, pp.1099-081, 1995.

K. P. Nickerson, R. B. Chanin, J. R. Sistrunk, D. A. Rasko, P. J. Fink et al., Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts, Infect Immun, vol.85, pp.1067-1083, 2017.

I. Lagkouvardos, R. Pukall, B. Abt, B. U. Foesel, J. P. Meier-kolthoff et al., The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota, Nat Microbiol, vol.1, p.16131, 2016.

A. Spor, O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome, Nat Rev Microbiol, vol.9, pp.279-90, 2011.

A. M. Mowat and W. W. Agace, Regional specialization within the intestinal immune system, Nat Rev Immunol, vol.14, pp.667-85, 2014.

M. A. Mcguckin, S. K. Lindén, P. Sutton, and T. H. Florin, Mucin dynamics and enteric pathogens, Nat Rev Microbiol, vol.9, pp.265-78, 2011.

S. Sudha, P. Devaraj, H. Devaraj, and N. , Adherence of Shigella dysenteriae 1 to human colonic mucin, Curr Microbiol, vol.42, pp.381-87, 2001.

R. Prakash, S. Raja, H. Devaraj, and S. N. Devaraj, Up-regulation of MUC2 and IL-1? expression in human colonic epithelial cells by Shigella and its interaction with mucins, PLoS One, vol.6, 2011.

A. Patil, A. L. Hughes, and G. Zhang, Rapid evolution and diversification of mammalian ?-defensins as revealed by comparative analysis of rodent and primate genes, Physiol Genomics, vol.20, pp.1-11, 2004.

R. Bals, C. Lang, D. J. Weiner, C. Vogelmeier, U. Welsch et al., Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules, Clin Diagnostic Lab Immunol, vol.8, pp.370-75, 2001.

D. Islam, L. Bandholtz, J. Nilsson, H. Wigzell, B. Christensson et al., Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator, Nat Med, vol.7, pp.180-85, 2001.

B. Sperandio, B. Regnault, J. Guo, Z. Zhang, S. L. Stanley et al., Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression, J Exp Med, vol.205, pp.1121-1153, 2008.

M. Singer and P. J. Sansonetti, IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis, J Immunol, vol.173, pp.4197-206, 2004.

J. J. Perdomo, P. Gounon, and P. J. Sansonetti, Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri, J Clin Invest, vol.93, pp.633-676, 1994.

P. J. Sansonetti, J. Arondel, J. M. Cavaillon, and M. Huerre, Role of interleukin-1 in the pathogenesis of experimental shigellosis, J Clin Invest, vol.96, pp.884-92, 1995.

P. J. Sansonetti, J. Arondel, M. Huerre, A. Harada, and K. Matsushima, Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis, Infect Immun, vol.67, pp.1471-80, 1999.

D. Shim, T. Suzuki, S. Chang, S. Park, P. J. Sansonetti et al., New animal model of shigellosis in the guinea pig: its usefulness for protective efficacy studies, J Immunol, vol.178, pp.2476-82, 2007.

M. V. Voino-yasenetsky and M. K. Voino-yasenetskaya, Experimental pneunomia caused by bacteria of the Shigella group, Acta Morphol Acad Sci Hung, vol.11, pp.439-54, 1962.

A. Phalipon, M. Kaufmann, P. Michetti, J. Cavaillon, M. Huerre et al., Monoclonal immunoglobulin a antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis, Galán JE, Waksman G. Protein-injection machines in bacteria. Cell, vol.182, pp.1306-1318, 1995.

N. J. De-nisco, G. Rivera-cancel, and K. Orth, The biochemistry of sensing: enteric pathogens regulate type III secretion in response to environmental and host cues, MBio, vol.9, pp.2122-2139, 2018.

S. D. Gunasinghe, C. T. Webb, K. D. Elgass, I. D. Hay, and T. Lithgow, Superresolution imaging of protein secretion systems and the cell surface of gram-negative bacteria, Front Cell Infect Microbiol, vol.7, p.220, 2017.

P. J. Sansonetti, D. J. Kopecko, and S. B. Formal, Involvement of a plasmid in the invasive ability of Shigella flexneri, Infect Immun, vol.35, pp.852-60, 1982.

J. E. Galán, M. Lara-tejero, T. C. Marlovits, and S. Wagner, Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells, Annu Rev Microbiol, vol.68, pp.415-453, 2014.

A. T. Maurelli, B. Blackmon, R. Curtis, and . Iii, Temperature-Dependent Expression of virulence genes in Shigella species, Infect Immun, vol.43, pp.195-201, 1984.

A. Veenendaal, J. L. Hodgkinson, L. Schwarzer, D. Stabat, S. F. Zenk et al., The type III secretion system needle tip complex mediates host cell sensing and translocon insertion, Mol Microbiol, vol.63, pp.1719-1749, 2007.

R. Ménard, P. J. Sansonetti, and C. Parsot, The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD, Embo J, vol.13, pp.5293-302, 1994.

J. Enninga, J. Mounier, P. Sansonetti, and G. Tran-van-nhieu, Secretion of type III effectors into host cells in real time, Nat Methods, vol.2, pp.959-65, 2005.

T. C. Marlovits, T. Kubori, A. Sukhan, J. E. Galán, and V. M. Unger, Structural insights into the assembly of the type III secretion needle complex, Science, vol.306, pp.1040-1082, 2004.

I. Martinez-argudo and A. J. Blocker, The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors, Mol Microbiol, vol.78, pp.1365-78, 2010.

B. Demers, P. J. Sansonetti, and C. Parsot, Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins, Embo J, vol.17, pp.2894-903, 1998.

F. X. Campbell-valois, P. Schnupf, G. Nigro, M. Sachse, P. J. Sansonetti et al., A fluorescent reporter reveals on/off regulation of the Shigella type III secretion apparatus during entry and cell-to-cell spread, Cell Host Microbe, vol.15, pp.177-89, 2014.

A. L. Page, H. Ohayon, P. J. Sansonetti, and C. Parsot, The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri, Cell Microbiol, vol.1, pp.183-93, 1999.

R. Schuch, R. C. Sandlin, and A. T. Maurelli, A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination, Mol Microbiol, vol.34, pp.675-89, 1999.

L. Pinaud, P. J. Sansonetti, and A. Phalipon, Host cell targeting by enteropathogenic bacteria T3SS effectors, Trends Microbiol, vol.26, pp.266-83, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02874893

M. F. De-jong and N. M. Alto, Cooperative immune suppression by Escherichia coli and Shigella effector proteins, Infect Immun, vol.86, pp.560-577, 2018.

H. Ashida, H. Mimuro, and C. Sasakawa, Shigella manipulates host immune responses by delivering effector proteins with specific roles, Front Immunol, vol.6, p.219, 2015.

S. Jain, M. Sharma, R. Gupta, N. Shree, and M. Kumar, Multidrug resistant Shigella flexneri: A rare case of septicemia in an infant, J Clin Diagnostic Res, vol.8, pp.3-04, 2014.

D. Islam, B. Wretlind, L. Hammarström, B. Christensson, and A. A. Lindberg, Semiquantitative estimation of Shigella antigen-specific antibodies: correlation with disease severity during shigellosis, Apmis, vol.104, pp.563-74, 1996.

D. Islam, B. Veress, P. K. Bardhan, A. A. Lindberg, and B. Christensson, In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis. In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis, Infect Immun, vol.65, pp.739-788, 1997.

E. M. Barry, M. F. Pasetti, M. B. Sztein, A. Fasano, K. L. Kotloff et al., Progress and pitfalls in Shigella vaccine research, Nat Rev Gastroenterol Hepatol, vol.10, pp.245-55, 2013.

S. B. Formal, E. V. Oaks, R. E. Olsen, M. Wingfield-eggleston, P. J. Snoy et al., Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei, J Infect Dis, vol.164, pp.533-570, 1991.

R. Wahid, J. K. Simon, W. L. Picking, K. L. Kotloff, M. M. Levine et al., Shigella antigen-specific B memory cells are associated with decreased disease severity in subjects challenged with wild-type Shigella flexneri 2a, Clin Immunol, vol.148, pp.35-43, 2013.

H. L. Dupont, R. B. Hornick, M. J. Snyder, J. P. Libonati, S. B. Formal et al., Immunity in shigellosis. II. Protection induced by oral live vaccine or primary infection, J Infect Dis, vol.125, pp.12-16, 1972.

R. Raqib, F. Qadri, P. Sarker, S. Mia, P. J. Sansonnetti et al., Delayed and reduced adaptive humoral immune responses in children with shigellosis compared with in adults, Scand J Immunol, vol.55, pp.414-437, 2002.

R. Raqib, C. Ekberg, P. Sharkar, P. K. Bardhan, A. Zychlinsky et al., Apoptosis in acute shigellosis is associated with increased production of fas/fas ligand, perforin, caspase-1, and caspase-3 but reduced production of Bcl-2 and interleukin-2, Infect Immun, vol.70, pp.3199-3207, 2002.

R. Raqib, S. Mia, F. Qadri, T. I. Alam, N. H. Alam et al., Innate immune responses in children and adults with shigellosis, Infect Immun, vol.68, pp.3620-3649, 2000.

T. Pédron, C. Thibault, and P. J. Sansonetti, The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2, J Biol Chem, vol.278, pp.33878-86, 2003.

J. D. Edgeworth, J. Spencer, A. Phalipon, G. E. Griffin, and P. J. Sansonetti, Cytotoxicity and interleukin-1? processing following Shigella flexneri infection of human monocyte-derived dendritic cells, Eur J Immunol, vol.32, pp.1464-71, 2002.

G. Sellge, J. G. Magalhaes, C. Konradt, J. H. Fritz, W. Salgado-pabon et al., Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity, J Immunol, vol.184, pp.2076-85, 2010.

R. Raqib, A. A. Lindberg, B. Wretlind, P. K. Bardhan, U. Andersson et al., Persistence of local cytokine production in shigellosis in acute and convalescent stages, Infect Immun, vol.63, pp.289-96, 1995.

R. Raqib, A. A. Lindberg, L. Bjork, P. K. Bardhan, B. Wretlind et al., Down-regulation of gamma interferon, tumor necrosis factor type I, interleukin 1 (IL-1) type I, IL-3, IL-4, and transforming growth factor beta type I receptors at the local site during the acute phase of Shigella infection, Infect Immun, vol.63, pp.3079-87, 1995.

M. M. Curtis and S. S. Way, Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens, Immunology, vol.126, pp.177-85, 2009.

L. Zhou, M. Chong, and D. R. Littman, Plasticity of CD4+ T cell lineage differentiation, Immunity, vol.30, pp.646-55, 2009.

S. P. Jehl, A. M. Doling, K. S. Giddings, A. Phalipon, P. J. Sansonetti et al., Antigen-specific CD8+ T cells fail to respond to Shigella flexneri, Infect Immun, vol.79, pp.2021-2051, 2011.

L. Pinaud, F. Samassa, Z. Porat, M. L. Ferrari, I. Belotserkovsky et al., Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes, Proc Natl Acad Sci, vol.114, pp.9954-59, 2017.

K. Nothelfer, E. T. Arena, L. Pinaud, M. Neunlist, B. Mozeleski et al., B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection, J Exp Med, vol.211, pp.1215-1244, 2014.

I. Belotserkovsky, K. Brunner, L. Pinaud, A. Rouvinski, M. Dellarole et al., Glycan-glycan interaction determines Shigella tropism toward human T lymphocytes, MBio, vol.9, pp.2309-2326, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02874896

S. Shanker, L. Hu, S. Ramani, R. L. Atmar, and M. K. Estes, Venkataram Prasad B V. Structural features of glycan recognition among viral pathogens, Curr Opin Struct Biol, vol.44, pp.211-229, 2017.

D. Xu, C. Liao, B. Zhang, W. D. Tolbert, W. He et al., Human enteric ?-defensin 5 promotes Shigella Infection by enhancing bacterial adhesion and invasion, Immunity, vol.48, pp.1233-1276, 2018.

C. S. Faherty, J. C. Redman, D. A. Rasko, E. M. Barry, and J. P. Nataro, Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure, Mol Microbiol, vol.85, pp.107-128, 2012.

A. Brotcke-zumsteg, C. Goosmann, V. Brinkmann, R. Morona, and A. Zychlinsky, IcsA is a Shigella flexneri adhesion regulated by the type III secretion system and required for pathogenesis, Cell Host Microbe, vol.15, pp.435-480, 2014.

L. G. Baum and P. R. Crocker, Glycoimmunology: ignore at your peril!, Immunol Rev, vol.230, pp.5-8, 2009.

C. Konradt, E. Frigimelica, K. Nothelfer, A. Puhar, W. Salgado-pabon et al., The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism, Cell Host Microbe, vol.9, pp.263-72, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00594631

W. Salgado-pabon, S. Celli, E. T. Arena, K. Nothelfer, P. Roux et al., Shigella impairs T lymphocyte dynamics in vivo, Proc Natl Acad Sci, vol.110, pp.4458-63, 2013.

F. R. Toapanta, P. J. Bernal, S. Fresnay, L. S. Magder, T. C. Darton et al., Oral challenge with wild-type Salmonella typhi induces distinct changes in B cell subsets in individuals who develop typhoid disease, PLoS Negl Trop Dis, vol.10, p.4766, 2016.

S. Fresnay, M. A. Mcarthur, L. Magder, T. C. Darton, C. Jones et al., Salmonella typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans, J Transl Med, vol.14, p.62, 2016.

H. B. Juel, H. B. Thomaides-brears, T. C. Darton, C. Jones, E. Jones et al., Salmonella typhi bactericidal antibodies reduce disease severity but do not protect against typhoid fever in a controlled human infection model, Front Immunol, vol.8, p.1916, 2018.

C. K. Porter, L. Bourgeois, A. Frenck, R. W. Prouty, M. Maier et al., Developing and utilizing controlled human models of infection, Vaccine, vol.35, pp.6813-6831, 2017.

C. K. Porter, A. Lynen, M. S. Riddle, K. Talaat, D. Sack et al., Clinical endpoints in the controlled human challenge model for Shigella: A call for standardization and the development of a disease severity score, PLoS One, vol.13, p.194325, 2018.

T. Gebhardt and L. K. Mackay, Local immunity by tissue-resident CD8+ memory T cells, Front Immunol, vol.3, p.340, 2012.

T. Sathaliyawala, M. Kubota, N. Yudanin, D. Turner, P. Camp et al., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets, Immunity, vol.38, pp.187-97, 2013.

T. Bergsbaken, M. J. Bevan, and P. J. Fink, Local inflammatory cues regulate differentiation and persistence of CD8+ tissue-resident memory T cells, Cell Rep, vol.19, pp.114-138, 2017.

D. Kentner, G. Martano, M. Callon, P. Chiquet, M. Brodmann et al., Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth, Proc Natl Acad Sci, vol.111, pp.9929-9963, 2014.

M. Buck, D. O'sullivan, K. Geltink, R. Curtis, J. Chang et al., Mitochondrial dynamics controls T cell fate through metabolic programming, Cell, vol.166, pp.63-76, 2016.

S. Mani, T. Wierzba, and R. I. Walker, Status of vaccine research and development for Shigella, Vaccine, vol.34, pp.2887-94, 2016.

T. S. Coster, C. W. Hoge, L. L. Vandeverg, A. B. Hartman, E. V. Oaks et al., Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602, Infect Immun, vol.67, pp.3437-3480, 1999.

K. M. Rahman, S. E. Arifeen, K. Zaman, M. Rahman, R. Raqib et al.,

, Safety, dose, immunogenicity, and transmissibility of an oral live attenuated Shigella flexneri 2a vaccine candidate (SC602) among healthy adults and school children in Matlab, Bangladesh. Vaccine, vol.29, pp.1347-54, 2011.

J. H. Passwell, S. Ashkenzi, Y. Banet-levi, R. Ramon-saraf, N. Farzam et al., Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1-4-year-old Israeli children, Vaccine, vol.28, pp.2231-2266, 2010.

M. S. Riddle, R. W. Kaminski, D. Paolo, C. Porter, C. K. Gutierrez et al., Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: A single-blind, randomized phase i study, Clin Vaccine Immunol, vol.23, pp.908-925, 2016.

C. Hatz, B. Bally, S. Rohrer, R. Steffen, S. Kramme et al., Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: A single blind, partially randomized Phase I study, Vaccine, vol.33, pp.4594-601, 2015.

A. Phalipon, M. Tanguy, C. Grandjean, C. Guerreiro, F. Belot et al., A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection, J Immunol, vol.182, pp.2241-2288, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414256

O. Launay, D. Lewis, A. Anemona, P. Loulergue, J. Leahy et al., Safety profile and immunologic responses of a novel vaccine against Shigella sonnei administered intramuscularly, intradermally and intranasally: results from two parallel randomized phase 1 clinical studies in healthy adult volunteers in Europe, EBio Med, vol.22, pp.164-72, 2017.

C. Gerke, A. M. Colucci, C. Giannelli, S. Sanzone, C. G. Vitali et al., Production of a Shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB, PLoS One, vol.10, p.134478, 2015.

, Enteric and diarrheal diseases strategy overview, 2018.

G. Biodefences, Wellcome trust to finance development of Shigella vaccine, 2019.

, Vaccines for diarrhoeal diseases or lower respiratory tract infections: Research and Innovation Action (RIA) call budget, The European & Developing Countries Clinical Trials Partnership (EDCTP), 2018.

K. L. Kotloff, M. S. Riddle, J. A. Platts-mills, P. Pavlinac, and A. Zaidi, Shigellosis. Lancet, vol.17, issue.17, pp.30242-30248, 2017.

P. Williams and J. A. Berkley, Paediatrics and International Child Health Guidelines for the treatment of dysentery (shigellosis): a systematic review of the evidence, Paediatr Int Child Health, vol.9047, pp.1-16, 2018.

W. H. Chen, L. Kotloff, M. S. Riddle, R. W. Kaminski, D. Paolo et al., Shigella vaccine development: finding the path of least resistance, Clin Vaccine Immunol, vol.23, pp.904-911, 2016.

M. Lipsitch and G. R. Siber, How can vaccines contribute to solving the antimicrobial resistance problem?, MBio, vol.7, pp.428-444, 2016.

J. Mounier, T. Vasselon, R. Hellio, M. Lesourd, and P. J. Sansonetti, Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole, Infect Immun, vol.60, pp.237-285, 1992.

P. J. Sansonetti and A. Phalipon, M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process, Semin Immunol, vol.11, pp.193-203, 1999.

E. T. Arena, F. Campbell-valois, J. Tinevez, G. Nigro, M. Sachse et al., Bioimage analysis of Shigella infection reveals targeting of colonic crypts, Proc Natl Acad Sci, vol.112, pp.3282-90, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02616457

M. M. Mathan and V. I. Mathan, Morphology of rectal mucosa of patients with shigellosis, Rev Infect Dis, vol.13, pp.314-332, 1991.

H. Hilbi, J. E. Moss, D. Hersh, Y. Chen, J. Arondel et al., Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB, J Biol Chem, vol.273, pp.32895-900, 1998.

A. Zychlinsky, M. C. Prevost, and P. J. Sansonetti, Shigella flexneri induces apoptosis in infected macrophages, Nature, vol.358, pp.167-69, 1992.

O. Arizmendi, W. D. Picking, and W. L. Picking, Macrophage apoptosis triggered by IpaD from Shigella flexneri, Infect Immun, vol.84, pp.1857-65, 2016.

P. J. Sansonetti, A. Ryter, P. Clerc, A. T. Maurelli, and J. Mounier, Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis, Infect Immun, vol.51, pp.461-69, 1986.

M. B. Goldberg, O. Barzu, C. Parsot, P. J. Sansonettil, D. Biochimie et al., Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement, J Bacteriol, vol.175, pp.2189-96, 1993.

M. L. Bernardini, J. Mounier, H. Dwhauteville, M. Coquis-rondont, and P. J. Sansonetti, Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin, Proc Natl Acad Sci, vol.86, pp.3867-71, 1989.

S. E. Girardin, I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne et al., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection

, J Biol Chem, vol.278, pp.8869-72, 2003.

D. J. Philpott, S. Yamaoka, A. Israel, and P. J. Sansonetti, Invasive Shigella flexneri activates NF-?B through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells, J Immunol, vol.165, pp.903-917, 2000.

C. A. Kasper, I. Sorg, C. Schmutz, T. Tschon, H. Wischnewski et al., Cell-cell propagation of NF-?B transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection, Immunity, vol.33, pp.804-820, 2010.

G. H. Lowell, R. P. Macdermott, P. L. Summers, A. A. Reeder, M. J. Bertovich et al., Antibody-dependent cell-mediated antibacterial activity: K lymphocytes, monocytes, and granulocytes are effective against Shigella, J Immunol, vol.125, pp.2778-84, 1980.

Y. Weinrauch, D. Drujan, S. D. Shapiro, J. Weiss, and A. Zychlinsky, Neutrophil elastase targets virulence factors of enterobacteria, Nature, vol.417, pp.91-94, 2002.