M. Berriman, The genome of the African trypanosome Trypanosoma brucei, Science, vol.309, pp.416-422, 2005.

M. J. Gardner, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.419, pp.498-511, 2002.

R. A. Holt, The genome sequence of the malaria mosquito Anopheles gambiae, Science, vol.298, pp.129-149, 2002.

A. C. Ivens, The genome of the kinetoplastid parasite, Leishmania major, Science, vol.309, pp.436-442, 2005.

L. Cong, Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, pp.819-823, 2013.

M. Jinek, RNA-programmed genome editing in human cells. eLife, vol.2, p.471, 2013.

P. Mali, RNA-guided human genome engineering via Cas9, Science, vol.339, pp.823-826, 2013.

B. Shen, Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. mBio, vol.5, pp.1114-1128, 2014.

S. Vinayak, Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum, Nature, vol.523, pp.477-480, 2015.

S. S. Gang, Targeted mutagenesis in a human-parasitic nematode, PLoS Pathog, vol.13, p.1006675, 2017.

B. D. Janssen, CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis, Sci. Rep, vol.8, p.270, 2018.

M. Ghorbal, Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system, Nat. Biotechnol, vol.32, pp.819-821, 2014.

J. C. Wagner, Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum, Nat. Methods, vol.11, pp.915-918, 2014.

C. Zhang, Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio, vol.5, pp.1414-1428, 2014.

L. Aravind, Plasmodium biology: genomic gleanings, Cell, vol.115, pp.771-785, 2003.

L. A. Kirkman, Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity, Nucleic Acids Res, vol.42, pp.370-379, 2014.

A. H. Lee, DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol, Mol. Biol. Rev, vol.78, pp.469-486, 2014.

D. Cristina, M. Carruthers, and V. B. , New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites, Parasitology, vol.145, pp.1119-1126, 2018.

C. R. Macpherson and A. Scherf, Flexible guide-RNA design for CRISPR applications using Protospacer Workbench, Nat. Biotechnol, vol.33, pp.805-806, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01226493

D. Peng and R. Tarleton, EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens, Microb. Genom, vol.1, p.33, 2015.

J. M. Ribeiro, Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum, Int. J. Parasitol, vol.48, pp.825-832, 2018.

Y. Gao and Y. Zhao, Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant Biol, vol.56, pp.343-349, 2014.

M. P. Walker and S. E. Lindner, Ribozyme-mediated, multiplex CRISPR gene editing and CRISPRi in Plasmodium yoelii. bioRxiv, 2018.

Y. Dang, Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency, Genome Biol, vol.16, p.280, 2015.

J. M. Bryant, CRISPR/Cas9 genome editing reveals that the intron is not essential for var2csa gene activation or silencing in Plasmodium falciparum, mBio, vol.8, pp.729-746, 2017.

A. Scherf and D. Mattei, Cloning and characterization of chromosome breakpoints of Plasmodium falciparum: breakage and new telomere formation occurs frequently and randomly in subtelomeric genes, Nucleic Acids Res, vol.20, pp.1491-1496, 1992.

J. Baum, Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites, Nucleic Acids Res, vol.37, pp.3788-3798, 2009.

M. L. Jones, A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in Plasmodium falciparum, Sci. Rep, vol.6, p.21800, 2016.

C. M. Armstrong and D. E. Goldberg, An FKBP destabilization domain modulates protein levels in Plasmodium falciparum, Nat. Methods, vol.4, pp.1007-1009, 2007.

S. M. Ganesan, Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites, Nat. Commun, vol.7, p.10727, 2016.

V. Muralidharan, Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag, Proc. Natl Acad. Sci. U. S. A, vol.108, pp.4411-4416, 2011.

P. Prommana, Inducible knockdown of Plasmodium gene expression using the glmS ribozyme, PLoS One, vol.8, p.73783, 2013.

L. A. Gilbert, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, vol.154, pp.442-451, 2013.

L. S. Qi, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

J. D. Sander and J. K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol, vol.32, pp.347-355, 2014.

S. Baumgarten, Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum bloodstage development. bioRxiv, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02321824

B. Xiao, Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum, Proc. Natl Acad. Sci. U. S. A, vol.116, pp.255-260, 2019.

S. M. Beverley, Protozomics: trypanosomatid parasite genetics comes of age, Nat. Rev. Genet, vol.4, pp.11-19, 2003.

M. Dacher, Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses, Mol. Microbiol, vol.93, pp.146-166, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178772

S. Dean, A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids, Open Biol, vol.5, p.140197, 2015.

F. Dumetz, Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression, mBio, vol.8, pp.599-616, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01974269

P. Prieto-barja, Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani, Nat. Ecol. Evol, vol.1, pp.1961-1969, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02107201

M. B. Rogers, Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania, Genome Res, vol.21, pp.2129-2142, 2011.

Y. Sterkers, FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major, Cell. Microbiol, vol.13, pp.274-283, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02499180

L. Sollelis, First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites, Cell. Microbiol, vol.17, pp.1405-1412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01992713

W. W. Zhang and G. Matlashewski, CRISPR-Cas9-mediated genome editing in Leishmania donovani, mBio, vol.6, p.861, 2015.

W. W. Zhang, Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms. mSphere, vol.2, pp.340-356, 2017.

T. Beneke, A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids, Roy. Soc. Open Sci, vol.4, p.170095, 2017.

D. Martel, Characterisation of casein kinase 1.1 in Leishmania donovani using the CRISPR Cas9 toolkit, Biomed. Res. Int, vol.2017, p.4635605, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01974292

T. Beneke, Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. bioRxiv, 2018.

K. R. Matthews, 25 years of African trypanosome research: From description to molecular dissection and new drug discovery, Mol. Biochem. Parasitol, vol.200, pp.30-40, 2015.

H. S. Kim, Strategies to construct null and conditional null Trypanosoma brucei mutants using Cre-recombinase and loxP, Mol. Biochem. Parasitol, vol.191, pp.16-19, 2013.

E. Rico, Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes, Sci. Rep, vol.8, p.7960, 2018.

N. Lander, CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment, mBio, vol.6, p.1012, 2015.

D. Peng, CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi, mBio, vol.6, pp.2097-2111, 2014.

J. J. Vasquez, Exploiting CRISPR-Cas9 technology to investigate individual histone modifications, Nucleic Acids Res, vol.46, p.106, 2018.

N. Lander, CRISPR/Cas9-mediated endogenous Cterminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor, J. Biol. Chem, vol.291, pp.25505-25515, 2016.

F. C. Costa, Expanding the toolbox for Trypanosoma cruzi: A parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping, PLoS Negl. Trop. Dis, vol.12, p.6388, 2018.

J. De-freitas-nascimento, Codon choice directs constitutive mRNA levels in trypanosomes, vol.7, p.32467, 2018.

L. Jeacock, Codon usage bias controls mRNA and protein abundance in trypanosomatids, vol.7, p.32496, 2018.

L. S. Müller, Genome organization and DNA accessibility control antigenic variation in trypanosomes, Nature, vol.563, pp.121-125, 2018.

K. M. Esvelt, Concerning RNA-guided gene drives for the alteration of wild populations, eLife, vol.3, p.3401, 2014.

Y. Dong, CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection, PLoS Pathog, vol.14, p.1006898, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02171043

V. M. Gantz, Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc. Natl Acad. Sci. U. S. A, vol.112, pp.6736-6743, 2015.

A. Hammond, A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat. Biotechnol, vol.34, pp.78-83, 2016.

A. M. Hammond, Improved CRISPR-based suppression gene drives mitigate resistance and impose a large reproductive load on laboratory-contained mosquito populations. bioRxiv, 2018.

K. Kyrou, A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat. Biotechnol, vol.36, pp.1062-1066, 2018.

A. M. Hammond, The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito, PLoS Genet, vol.13, p.1007039, 2017.

R. L. Unckless, Evolution of resistance against CRISPR/Cas9 gene drive, Genetics, vol.205, pp.827-841, 2017.

, Genetic diversity of the African malaria vector Anopheles gambiae, The Anopheles gambiae 1000 Genomes Consortium, vol.552, pp.96-100, 2017.

H. M. Ferguson, Ecology: a prerequisite for malaria elimination and eradication, PLoS Med, vol.7, p.1000303, 2010.

S. M. Sidik, A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes, Cell, vol.166, pp.1423-1435, 2016.

L. C. Soares-medeiros, Rapid, selection-free, highefficiency genome editing in protozoan parasites using CRISPR-Cas9 ribonucleoproteins, mBio, vol.8, pp.1788-1805, 2017.

J. Birnbaum, A genetic system to study Plasmodium falciparum protein function, Nat. Methods, vol.14, pp.450-456, 2017.

S. M. Duncan, Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation, Mol. Microbiol, vol.100, pp.931-944, 2016.

G. F. Späth and J. Clos, Joining forces: first application of a rapamycin-induced dimerizable Cre system for conditional null mutant analysis in Leishmania, Mol. Microbiol, vol.100, pp.923-927, 2016.

E. D. Crawford, Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733, PLoS One, vol.12, p.178163, 2017.

O. O. Abudayyeh, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, vol.353, p.5573, 2016.

B. Zetsche, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, vol.163, pp.759-771, 2015.

O. O. Abudayyeh, RNA targeting with CRISPR-Cas13, Nature, vol.550, pp.280-284, 2017.

D. B. Cox, RNA editing with CRISPR-Cas13. Science, vol.358, pp.1019-1027, 2017.

J. M. Carlton, Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii, Nature, vol.419, pp.512-519, 2002.

M. B. Rogers, Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania, Genome Res, vol.21, pp.2129-2142, 2011.

C. Aurrecoechea, EuPathDB: the eukaryotic pathogen genomics database resource, Nucleic Acids Res, vol.45, pp.581-591, 2017.