R. Araya-secchi, B. L. Neel, and M. Sotomayor, An elastic element in the protocadherin-15 tip link of the inner ear, Nature Communications, vol.7, p.13458, 2016.

J. Ashmore, Cochlear outer hair cell motility, Physiological Reviews, vol.88, pp.173-210, 2006.

J. A. Assad, G. M. Shepherd, and D. P. Corey, Tip-link integrity and mechanical transduction in vertebrate hair cells, Neuron, vol.7, pp.985-994, 1991.

J. Barral, F. Jü-licher, and P. Martin, Friction from transduction channels' Gating affects spontaneous Hair-Bundle oscillations, Biophysical Journal, vol.114, pp.425-436, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730607

T. F. Bartsch, F. E. Hengel, A. Oswald, G. Dionne, I. V. Chipendo et al., The elasticity of individual protocadherin 15 molecules implicates cadherins as the gating springs for hearing, 2018.

T. F. Bartsch and A. J. Hudspeth, A new twist on tip links, Neuron, vol.99, pp.423-425, 2018.

M. Beurg, M. G. Evans, C. M. Hackney, and R. Fettiplace, A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells, Journal of Neuroscience, vol.26, pp.10992-11000, 2006.

M. Beurg, J. H. Nam, A. Crawford, and R. Fettiplace, The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells, Biophysical Journal, vol.94, pp.2639-2653, 2008.

M. Beurg, R. Fettiplace, J. H. Nam, and A. J. Ricci, Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging, Nature Neuroscience, vol.12, pp.553-558, 2009.

M. Beurg, X. Tan, and R. Fettiplace, A prestin motor in chicken auditory hair cells: active force generation in a nonmammalian species, Neuron, vol.79, pp.69-81, 2013.

M. Beurg, W. Xiong, B. Zhao, U. Mü-ller, and R. Fettiplace, Subunit determination of the conductance of hair-cell mechanotransducer channels, PNAS, vol.112, pp.1589-1594, 2015.

M. Beurg, R. Cui, A. C. Goldring, S. Ebrahim, R. Fettiplace et al., Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea, Nature Communications, vol.9, p.2185, 2018.

V. Bormuth, J. Barral, J. F. Joanny, F. Jü-licher, and P. Martin, Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear, PNAS, vol.111, pp.7185-7190, 2014.

S. K. Bosher and R. L. Warren, Very low calcium content of cochlear endolymph, an extracellular fluid, Nature, vol.273, pp.377-378, 1978.

C. Bustamante, J. Marko, E. Siggia, and S. Smith, Entropic elasticity of lambda-phage DNA, Science, vol.265, pp.1599-1600, 1994.

E. L. Cheung and D. P. Corey, Ca2+ changes the force sensitivity of the hair-cell transduction channel, Biophysical Journal, vol.90, pp.124-139, 2006.

D. P. Corey and A. J. Hudspeth, Kinetics of the receptor current in bullfrog saccular hair cells, The Journal of Neuroscience, vol.3, pp.962-976, 1983.

L. F. Corns, S. L. Johnson, C. J. Kros, and W. Marcotti, Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells, PNAS, vol.111, pp.14918-14923, 2014.

R. A. Eatock, Adaptation in hair cells, Annual Review of Neuroscience, vol.23, pp.285-314, 2000.

T. Effertz, L. Becker, A. W. Peng, and A. J. Ricci, Phosphoinositol-4,5-Bisphosphate regulates auditory Hair-Cell Mechanotransduction-Channel pore properties and fast adaptation, The Journal of Neuroscience, vol.37, pp.11632-11646, 2017.

R. Fettiplace, Active hair bundle movements in auditory hair cells, The Journal of Physiology, vol.576, pp.29-36, 2006.

R. Fettiplace and P. A. Fuchs, Mechanisms of hair cell tuning, Annual Review of Physiology, vol.61, pp.809-834, 1999.

R. Fettiplace and C. M. Hackney, The sensory and motor roles of auditory hair cells, Nature Reviews Neuroscience, vol.7, pp.19-29, 2006.

R. Fettiplace and K. X. Kim, The physiology of mechanoelectrical transduction channels in hearing, Physiological Reviews, vol.94, pp.951-986, 2014.

A. Flock and D. Strelioff, Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ, Nature, vol.310, pp.597-599, 1984.

D. M. Freeman and T. F. Weiss, Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles, Hearing Research, vol.48, issue.90, p.90198, 1990.

L. S. Frishkopf and D. J. Derosier, Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea, Hearing Research, vol.12, issue.83, pp.90008-90012, 1983.

D. N. Furness, Y. Katori, N. Kumar, B. Hackney, and C. M. , The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium, Neuroscience, vol.154, pp.10-21, 2008.

J. Ge, J. Elferich, A. Goehring, H. Zhao, P. Schuck et al., Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5, vol.7, p.38770, 2018.

G. Gé-lé-oc, G. Lennan, G. P. Richardson, and C. J. Kros, A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol.264, pp.611-621, 1997.

P. G. Gillespie and U. Mü, Mechanotransduction by hair cells: models, molecules, and mechanisms, Cell, vol.139, pp.33-44, 2009.

D. D. Greenwood, A cochlear frequency-position function for several species-29 years later, The Journal of the Acoustical Society of America, vol.87, pp.2592-2605, 1990.

A. W. Gummer, W. Hemmert, and H. P. Zenner, Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning, PNAS, vol.93, pp.8727-8732, 1996.

N. Hacohen, J. A. Assad, W. J. Smith, and D. P. Corey, Regulation of tension on hair-cell transduction channels: displacement and calcium dependence, The Journal of Neuroscience, vol.9, pp.3988-3997, 1989.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, 2012.

T. Holton and A. J. Hudspeth, A micromechanical contribution to cochlear tuning and tonotopic organization, Science, vol.222, pp.508-510, 1983.

J. Howard and A. J. Hudspeth, Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell, Neuron, vol.1, issue.88, pp.90139-90139, 1988.

A. J. Hudspeth, How the ear's works work, Nature, vol.341, pp.397-404, 1989.

A. J. Hudspeth, Making an effort to listen: mechanical amplification in the ear, Neuron, vol.59, pp.530-545, 2008.

A. J. Hudspeth and M. P. Jü-licher-f, A critique of the critical cochlea: hopf-a bifurcation-is better than none, Journal of Neurophysiology, vol.104, pp.1219-1229, 2010.

A. J. Hudspeth, Integrating the active process of hair cells with cochlear function, Nature Reviews Neuroscience, vol.15, pp.600-614, 2014.

A. J. Hudspeth and P. G. Gillespie, Pulling springs to tune transduction: adaptation by hair cells, Neuron, vol.12, pp.1-9, 1994.

A. A. Indzhykulian, R. Stepanyan, A. Nelina, K. J. Spinelli, Z. M. Ahmed et al., Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells, PLOS Biology, vol.11, p.1001583, 2013.

F. Jaramillo and A. J. Hudspeth, Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle, PNAS, vol.90, pp.1330-1334, 1993.

S. L. Johnson, M. Beurg, W. Marcotti, and R. Fettiplace, Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant, Neuron, vol.70, pp.1143-1154, 2011.

B. Kachar, M. Parakkal, M. Kurc, Y. Zhao, and P. G. Gillespie, High-resolution structure of hair-cell tip links, PNAS, vol.97, pp.13336-13341, 2000.

H. Kang, Q. Wen, P. A. Janmey, J. X. Tang, E. Conti et al., Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels, The Journal of Physical Chemistry B, vol.113, pp.3799-3805, 2009.

Y. Kawashima, G. S. Gé-lé-oc, K. Kurima, V. Labay, A. Lelli et al., Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes, Journal of Clinical Investigation, vol.121, pp.4796-4809, 2011.

P. Kazmierczak, H. Sakaguchi, J. Tokita, E. M. Wilson-kubalek, R. A. Milligan et al., Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells, Nature, vol.449, pp.87-91, 2007.

H. J. Kennedy, M. G. Evans, A. C. Crawford, and R. Fettiplace, Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells, Nature Neuroscience, vol.6, pp.832-836, 2003.

H. J. Kennedy, A. C. Crawford, and R. Fettiplace, Force generation by mammalian hair bundles supports a role in cochlear amplification, Nature, vol.433, pp.880-883, 2005.

H. J. Kennedy, M. G. Evans, A. C. Crawford, and R. Fettiplace, Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms, Journal of Neuroscience, vol.26, pp.2757-2766, 2006.

K. X. Kim and R. Fettiplace, Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins, The Journal of General Physiology, vol.141, pp.141-148, 2013.

A. S. Kozlov, T. Risler, and A. J. Hudspeth, Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels, Nature Neuroscience, vol.10, pp.87-92, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00961026

A. S. Kozlov, J. Baumgart, T. Risler, C. P. Versteegh, and A. J. Hudspeth, Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale, Nature, vol.474, pp.376-379, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00961008

C. J. Kros, A. Rü-sch, and G. P. Richardson, Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea, Proceedings of the Royal society London B: Biological Sciences, vol.249, pp.185-193, 1992.

D. Leith, Drag on nonspherical objects, Aerosol Science and Technology, vol.6, pp.153-161, 1987.

E. R. Lewis, E. L. Leverenz, and H. Koyama, The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane, Journal of Comparative Physiology, vol.145, pp.437-445, 1982.

D. J. Lim, Functional structure of the organ of Corti: a review, Hearing Research, vol.22, pp.117-146, 1986.

G. A. Manley, G. K. Yates, K. , and C. , Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard tiliqua, Hearing Research, vol.33, pp.181-189, 1988.

V. S. Markin and A. J. Hudspeth, Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear, Annual Review of Biophysics and Biomolecular Structure, vol.24, pp.59-83, 1995.

R. E. Marquis and A. J. Hudspeth, Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gatingspring integrity in hair cells, PNAS, vol.94, pp.11923-11928, 1997.

P. Martin, A. D. Mehta, and A. J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell, PNAS, vol.97, pp.12026-12031, 2000.

P. Martin, A. J. Hudspeth, J. , and F. , Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process, PNAS, vol.98, pp.14380-14385, 2001.

P. Martin, D. Bozovic, Y. Choe, and A. J. Hudspeth, Spontaneous oscillation by hair bundles of the bullfrog's sacculus, The Journal of Neuroscience, vol.23, pp.4533-4548, 2003.

P. Martin, Active hair-bundle motility of the hair cells of vestibular and auditory organs, pp.93-143, 2008.

J. Meaud and K. Grosh, Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model, Biophysical Journal, vol.100, pp.2576-2585, 2011.

N. Michalski and C. Petit, Genetics of auditory mechano-electrical transduction, Pflügers Archiv -European Journal of Physiology, vol.467, pp.49-72, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01472836

A. Neveu, Suitability of european green frogs for intensive culture: comparison between different phenotypes of the esculenta hybridogenetic complex, Aquaculture, vol.295, pp.30-37, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01453764

R. Nobili and F. Mammano, Biophysics of the cochlea II: stationary nonlinear phenomenology, The Journal of the Acoustical Society of America, vol.99, pp.2244-2255, 1996.

D. O-maoilé-idigh, J. Licher, and F. , The interplay between active hair bundle motility and electromotility in the cochlea, The Journal of the Acoustical Society of America, vol.128, pp.1175-1190, 2010.

B. Pan, N. Akyuz, X. P. Liu, Y. Asai, C. Nist-lund et al., TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells, Neuron, vol.99, pp.736-753, 2018.

A. W. Peng, I. A. Belyantseva, P. D. Hsu, T. B. Friedman, and S. Heller, Twinfilin 2 regulates actin filament lengths in cochlear stereocilia, Journal of Neuroscience, vol.29, pp.15083-15088, 2009.

A. W. Peng, T. Effertz, and A. J. Ricci, Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry, Neuron, vol.80, pp.960-972, 2013.

A. W. Peng, R. Gnanasambandam, F. Sachs, and A. J. Ricci, Adaptation independent modulation of auditory hair cell mechanotransduction channel open probability implicates a role for the lipid bilayer, Journal of Neuroscience, vol.36, pp.2945-2956, 2016.

J. O. Pickles, S. D. Comis, and M. P. Osborne, Cross-links between stereocilia in the guinea pig organ of corti, and their possible relation to sensory transduction, Hearing Research, vol.15, issue.84, pp.90041-90049, 1984.

J. O. Pickles, M. P. Osborne, and S. D. Comis, Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig, Hearing Research, vol.25, pp.173-183, 1987.

R. J. Powers, S. Roy, E. Atilgan, W. E. Brownell, S. X. Sun et al., Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel, Biophysical Journal, vol.102, pp.201-210, 2012.

T. Reichenbach and A. J. Hudspeth, The physics of hearing: fluid mechanics and the active process of the inner ear, Reports on Progress in Physics, vol.77, p.76601, 2014.

A. J. Ricci, Y. C. Wu, and R. Fettiplace, The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells, The Journal of Neuroscience, vol.18, pp.8261-8277, 1998.

A. J. Ricci, A. C. Crawford, and R. Fettiplace, Mechanisms of active hair bundle motion in auditory hair cells, The Journal of Neuroscience, vol.22, pp.44-52, 2002.

A. J. Ricci, A. C. Crawford, and R. Fettiplace, Tonotopic variation in the conductance of the hair cell mechanotransducer channel, Neuron, vol.40, pp.983-990, 2003.

A. J. Ricci, H. J. Kennedy, A. C. Crawford, and R. Fettiplace, The transduction channel filter in auditory hair cells, Journal of Neuroscience, vol.25, pp.7831-7839, 2005.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM, Science, vol.276, pp.1109-1112, 1997.

B. Roth and V. Bruns, Postnatal development of the rat organ of Corti. II. hair cell receptors and their supporting elements, Anatomy and Embryology, vol.185, pp.571-581, 1992.

I. J. Russell, M. Kö-ssl, and G. P. Richardson, Nonlinear mechanical responses of mouse cochlear hair bundles, Proceedings ot the Royal Society London B: Biological Sciences, vol.250, pp.217-227, 1992.

I. J. Russell and P. M. Sellick, Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells, The Journal of Physiology, vol.338, pp.179-206, 1983.

H. Schlichting, Laminare strahlausbreitung. ZAMM -Zeitschrift Für Angewandte Mathematik Und Mechanik, vol.13, pp.260-263, 1933.

M. Sotomayor, W. A. Weihofen, R. Gaudet, and D. P. Corey, Structural determinants of cadherin-23 function in hearing and deafness, Neuron, vol.66, pp.85-100, 2010.

L. G. Tilney, M. S. Tilney, and D. J. Derosier, Actin filaments, Stereocilia, and hair cells: how cells count and measure, Annual Review of Cell Biology, vol.8, pp.257-274, 1992.

L. G. Tilney and M. S. Tilney, The actin filament content of hair cells of the bird cochlea is nearly constant even though the length, width, and number of stereocilia vary depending on the hair cell location, The Journal of Cell Biology, vol.107, pp.2563-2574, 1988.

J. Y. Tinevez, F. Jü-licher, and P. Martin, Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell, Biophysical Journal, vol.93, pp.4053-4067, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-02616477

J. Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds et al., TrackMate: an open and extensible platform for single-particle tracking, Methods, vol.115, pp.80-90, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01799353

M. M. Tirado and J. G. De-la-torre, Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders, The Journal of Chemical Physics, vol.71, pp.2581-2587, 1979.

R. G. Turner, A. A. Muraski, and D. W. Nielsen, Cilium length: influence on neural tonotopic organization, Science, vol.213, pp.1519-1521, 1981.

A. Viberg and B. Canlon, The guide to plotting a cochleogram, Hearing Research, vol.197, pp.1-10, 2004.

A. Vilfan and T. Duke, Two adaptation processes in auditory hair cells together can provide an active amplifier, Biophysical Journal, vol.85, pp.191-203, 2003.

V. Bé-ké-sy, G. Wever, and E. G. , Experiments in Hearing, 1960.

J. Waguespack, F. T. Salles, B. Kachar, and A. J. Ricci, Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells, Journal of Neuroscience, vol.27, pp.13890-13902, 2007.

A. Wright, Dimensions of the cochlear stereocilia in man and the guinea pig, Hearing Research, vol.13, pp.89-98, 1984.

D. K. Wu and M. W. Kelley, Molecular mechanisms of inner ear development, Cold Spring Harbor Perspectives in Biology, vol.4, p.8409, 2012.