N. J. Maciver, R. D. Michalek, and J. C. Rathmell, Metabolic regulation of T lymphocytes, Annual Review of Immunology, vol.31, pp.259-283, 2013.

E. L. Pearce, M. C. Poffenberger, C. H. Chang, and R. G. Jones, Fueling immunity: insights into metabolism and lymphocyte function, Science, vol.342, issue.6155, p.1242454, 2013.

K. M. Holmstrom and T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nature Reviews Molecular Cell Biology, vol.15, issue.6, pp.411-421, 2014.

E. L. Pearce and E. J. Pearce, Metabolic pathways in immune cell activation and quiescence, Immunity, vol.38, issue.4, pp.633-643, 2013.

C. D. Folmes, P. P. Dzeja, T. J. Nelson, and A. Terzic, Metabolic plasticity in stem cell homeostasis and differentiation, Cell Stem Cell, vol.11, issue.5, pp.596-606, 2012.

L. A. Sena and N. S. Chandel, Physiological roles of mitochondrial reactive oxygen species, Molecular Cell, vol.48, issue.2, pp.158-167, 2012.

R. B. Hamanaka and N. S. Chandel, Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes, Trends in biochemical sciences, vol.35, issue.9, pp.505-513, 2010.

E. Lapuente-brun, R. Moreno-loshuertos, R. Acin-perez, A. Latorre-pellicer, C. Colas et al., Supercomplex assembly determines electron flux in the mitochondrial electron transport chain, Science, vol.340, issue.6140, pp.1567-1570, 2013.

R. Acin-perez and J. A. Enriquez, The function of the respiratory supercomplexes: the plasticity model, Biochimica et Biophysica Acta, vol.1837, issue.4, pp.444-450, 2014.

J. A. Klein, C. M. Longo-guess, M. P. Rossmann, K. L. Seburn, R. E. Hurd et al., The harlequin mouse mutation downregulates apoptosis-inducing factor, Nature, vol.419, issue.6905, pp.367-374, 2002.

J. A. Pospisilik, C. Knauf, N. Joza, P. Benit, M. Orthofer et al., Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes, Cell, vol.131, issue.3, pp.476-491, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409714

E. Hangen, O. Feraud, S. Lachkar, H. Mou, N. Doti et al., Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis, Molecular Cell, vol.58, issue.6, pp.1001-1014, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02356565

K. Meyer, S. Buettner, D. Ghezzi, M. Zeviani, D. Bano et al., Loss of apoptosis-inducing factor critically affects MIA40 function, Cell Death & Disease, vol.6, p.1814, 2015.

S. Milasta, C. P. Dillon, O. E. Sturm, K. C. Verbist, T. L. Brewer et al., Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function, Immunity, vol.44, issue.1, pp.88-102, 2016.

R. Ishimura, G. R. Martin, and S. L. Ackerman, Loss of apoptosis-inducing factor results in cell-type-specific neurogenesis defects, Journal of Neuroscience, vol.28, pp.4938-4948, 2008.

P. Benit, S. Goncalves, E. P. Dassa, J. J. Briere, and P. Rustin, The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes, PloS One, vol.3, issue.9, p.3208, 2008.

E. C. Cheung, N. Joza, N. A. Steenaart, K. A. Mcclellan, M. Neuspiel et al., Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis, The EMBO Journal, vol.25, issue.17, pp.4061-4073, 2006.

C. Artus, H. Boujrad, A. Bouharrour, M. N. Brunelle, S. Hoos et al., AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX, The EMBO Journal, vol.29, issue.9, pp.1585-1599, 2010.

M. Baritaud, L. Cabon, L. Delavallee, P. Galan-malo, M. E. Gilles et al., AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation, Cell Death & Disease, vol.3, p.390, 2012.

L. Cabon, P. Galan-malo, A. Bouharrour, L. Delavallee, M. N. Brunelle-navas et al., BID regulates AIF-mediated caspaseindependent necroptosis by promoting BAX activation, Cell Death & Differentiation, vol.19, issue.2, pp.245-256, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00657645

R. S. Moubarak, V. J. Yuste, C. Artus, A. Bouharrour, P. A. Greer et al., Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and bax is essential in apoptosis-inducing factor-mediated programmed necrosis, Molecular and Cellular Biology, vol.27, issue.13, pp.4844-4862, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00165707

S. W. Yu, H. Wang, M. F. Poitras, C. Coombs, W. J. Bowers et al., Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor, Science, vol.297, issue.5579, pp.259-263, 2002.

Y. Xu, S. Huang, Z. G. Liu, and J. Han, Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation, Journal of Biological Chemistry, vol.281, issue.13, pp.8788-8795, 2006.

P. Benit, A. Pelhaitre, E. Saunier, S. Bortoli, A. Coulibaly et al., Paradoxical inhibition of glycolysis by pioglitazone opposes the mitochondriopathy caused by AIF deficiency, vol.17, pp.75-87, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01477508

D. Ghezzi, I. Sevrioukova, F. Invernizzi, C. Lamperti, M. Mora et al., Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor, The American Journal of Human Genetics, vol.86, issue.4, pp.639-649, 2010.

I. Berger, Z. Ben-neriah, T. Dor-wolman, A. Shaag, A. Saada et al., Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing, Molecular Genetics and Metabolism, vol.104, issue.4, pp.517-520, 2011.

D. Diodato, G. Tasca, D. Verrigni, A. D'amico, T. Rizza et al., A novel AIFM1 mutation expands the phenotype to an infantile motor neuron disease, European Journal of Human Genetics, vol.24, issue.3, pp.463-466, 2016.

P. Sancho, A. Sanchez-monteagudo, A. Collado, C. Marco-marin, C. Dominguez-gonzalez et al., A newly distal hereditary motor neuropathy caused by a rare AIFM1 mutation, Neurogenetics, vol.18, issue.4, pp.245-250, 2017.

S. M. Shen, M. Guo, Z. Xiong, Y. Yu, X. Y. Zhao et al., AIF inhibits tumor metastasis by protecting PTEN from oxidation, EMBO Reports, vol.16, issue.11, pp.1563-1580, 2015.

T. Li, K. Li, S. Zhang, Y. Wang, Y. Xu et al., Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice, Cell Death & Disease, vol.11, issue.1, p.77, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02489415

S. Srivastava, H. Banerjee, A. Chaudhry, A. Khare, A. Sarin et al., Apoptosis-inducing factor regulates death in peripheral T cells, The Journal of Immunology, vol.179, issue.2, pp.797-803, 2007.

V. P. Van-empel, A. T. Bertrand, R. J. Van-oort, R. Van-der-nagel, M. Engelen et al., EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overloadinduced heart failure in the harlequin mouse mutant, Journal of the American College of Cardiology, vol.48, issue.4, pp.824-832, 2006.

S. H. Chung, M. Calafiore, J. M. Plane, D. E. Pleasure, and W. Deng, Apoptosis inducing factor deficiency causes reduced mitofusion 1 expression and patterned Purkinje cell degeneration, Neurobiology of Disease, vol.41, issue.2, pp.445-457, 2011.

N. Joza, G. Y. Oudit, D. Brown, P. Benit, Z. Kassiri et al., Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy, Molecular and Cellular Biology, vol.25, issue.23, pp.10261-10272, 2005.

L. Cabon, A. Bertaux, M. N. Brunelle-navas, I. Nemazanyy, L. Scourzic et al., AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes, Cell Death & Differentiation, vol.25, issue.5, pp.983-1001, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02365848

A. Bertaux, L. Cabon, M. N. Brunelle-navas, S. Bouchet, I. Nemazanyy et al., Mitochondrial OXPHOS influences immune cell fate: lessons from hematopoietic AIF-deficient and NDUFS4-deficient mouse models, Cell Death & Disease, vol.9, issue.6, p.581, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02365877

D. Hameyer, A. Loonstra, L. Eshkind, S. Schmitt, C. Antunes et al., Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues, Physiological Genomics, vol.31, issue.1, pp.32-41, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00173088

J. Zhang, E. Nuebel, D. R. Wisidagama, K. Setoguchi, J. S. Hong et al., Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells, Nature Protocols, vol.7, issue.6, pp.1068-1085, 2012.

S. A. Stewart, D. M. Dykxhoorn, D. Palliser, H. Mizuno, E. Y. Yu et al., Lentivirus-delivered stable gene silencing by RNAi in primary cells, RNA, vol.9, issue.4, pp.493-501, 2003.

J. M. Ross, J. Oberg, S. Brene, G. Coppotelli, M. Terzioglu et al., High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio, Proceedings of the National Academy of Sciences of the U S A, vol.107, issue.46, 2010.

N. V. Dudkina, R. Kouril, K. Peters, H. P. Braun, and E. J. Boekema, Structure and function of mitochondrial supercomplexes, Biochimica et Biophysica Acta, vol.1797, issue.6e7, pp.664-670, 2010.

S. Herzig and R. J. Shaw, AMPK: guardian of metabolism and mitochondrial homeostasis, Nature Reviews Molecular Cell Biology, vol.19, issue.2, pp.121-135, 2018.

R. C. Rabinovitch, B. Samborska, B. Faubert, E. H. Ma, S. P. Gravel et al., AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species, Cell Reports, vol.21, issue.1, pp.1-9, 2017.

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint, Molecular Cell, vol.30, issue.2, pp.214-226, 2008.

T. Sanli, G. R. Steinberg, G. Singh, and T. Tsakiridis, AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway, Cancer Biology & Therapy, vol.15, issue.2, pp.156-169, 2014.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nature Reviews Molecular Cell Biology, vol.13, issue.4, pp.251-262, 2012.

B. F. Holmes, E. J. Kurth-kraczek, and W. W. Winder, Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle, Journal of Applied Physiology, vol.87, issue.5, 1985.

S. L. Mcgee, B. J. Van-denderen, K. F. Howlett, J. Mollica, J. D. Schertzer et al., AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5, Diabetes, vol.57, issue.4, pp.860-867, 2008.

E. O. Ojuka, T. E. Jones, L. A. Nolte, M. Chen, B. R. Wamhoff et al., Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2þ), American Journal of Physiology. Endocrinology and Metabolism, vol.282, issue.5, pp.1008-1013, 2002.

E. Bahne, E. W. Sun, R. L. Young, M. Hansen, D. P. Sonne et al., Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes, JCI Insight, vol.3, issue.23, 2018.

R. C. Hresko and P. W. Hruz, HIV protease inhibitors act as competitive inhibitors of the cytoplasmic glucose binding site of GLUTs with differing affinities for GLUT1 and GLUT4, PloS One, vol.6, issue.9, p.25237, 2011.

D. Brown, B. D. Yu, N. Joza, P. Benit, J. Meneses et al., Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal, Proceedings of the National Academy of Sciences of the U S A, vol.103, issue.26, pp.9918-9923, 2006.

D. Munoz-espin and M. Serrano, Cellular senescence: from physiology to pathology, Nature Reviews Molecular Cell Biology, vol.15, issue.7, pp.482-496, 2014.

R. I. Martinez-zamudio, L. Robinson, P. F. Roux, and O. Bischof, SnapShot: cellular senescence pathways, Cell, vol.170, issue.4, pp.816-816, 2017.

E. V. Broude, M. E. Swift, C. Vivo, B. D. Chang, B. M. Davis et al., p21(Waf1/Cip1/Sdi1) mediates retinoblastoma protein degradation, Oncogene, vol.26, issue.48, pp.6954-6958, 2007.

C. J. Sherr and F. Mccormick, The RB and p53 pathways in cancer, Cancer Cell, vol.2, issue.2, pp.103-112, 2002.

L. Zheng and W. H. Lee, The retinoblastoma gene: a prototypic and multifunctional tumor suppressor, Experimental Cell Research, vol.264, issue.1, pp.2-18, 2001.

J. A. Leinicke, S. Longshore, D. Wakeman, J. Guo, and B. W. Warner, Regulation of retinoblastoma protein (Rb) by p21 is critical for adaptation to massive small bowel resection, Journal of Gastrointestinal Surgery, vol.16, issue.1, pp.148-155, 2012.

V. Gorgoulis, P. D. Adams, A. Alimonti, D. C. Bennett, O. Bischof et al., Cellular senescence: defining a path forward, Cell, vol.179, issue.4, pp.813-827, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02349008

E. J. Park, K. J. Min, T. J. Lee, Y. H. Yoo, Y. S. Kim et al., beta-Lapachone induces programmed necrosis through the RIP1-PARP-AIFdependent pathway in human hepatocellular carcinoma SK-Hep1 cells, Cell Death & Disease, vol.5, p.1230, 2014.

E. S. Hars, Y. L. Lyu, C. P. Lin, and L. F. Liu, Role of apoptotic nuclease caspase-activated DNase in etoposide-induced treatment-related acute myelogenous leukemia, Cancer Research, vol.66, issue.18, pp.8975-8979, 2006.

C. L. Perkins, G. Fang, C. N. Kim, and K. N. Bhalla, The role of Apaf-1, caspase-9, and bid proteins in etoposide-or paclitaxel-induced mitochondrial events during apoptosis, Cancer Research, vol.60, issue.6, pp.1645-1653, 2000.

C. Maas, E. De-vries, S. W. Tait, and J. Borst, Bid can mediate a proapoptotic response to etoposide and ionizing radiation without cleavage in its unstructured loop and in the absence of p53, Oncogene, vol.30, issue.33, pp.3636-3647, 2011.

Y. Lallemand, V. Luria, R. Haffner-krausz, and P. Lonai, Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase, Transgenic Research, vol.7, issue.2, pp.105-112, 1998.

M. Schiff, P. Benit, R. El-khoury, D. Schlemmer, J. F. Benoist et al., Mouse studies to shape clinical trials for mitochondrial diseases: high fat diet in Harlequin mice, PloS One, vol.6, issue.12, p.28823, 2011.

N. Vahsen, C. Cande, J. Briere, P. Benit, P. Rustin et al., The absence of apoptosis-inducing factor AIF induces complex I deficiency, Biochimica et Biophysica Acta, vol.1657, p.83, 2004.

N. G. Larsson, J. Wang, H. Wilhelmsson, A. Oldfors, P. Rustin et al., Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice, Nature Genetics, vol.18, issue.3, pp.231-236, 1998.

M. M. Humble, M. J. Young, J. F. Foley, A. R. Pandiri, G. S. Travlos et al., Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance, Human Molecular Genetics, vol.22, issue.5, pp.1017-1025, 2013.

V. J. Yuste, R. S. Moubarak, C. Delettre, M. Bras, P. Sancho et al., Cysteine protease inhibition prevents mitochondrial apoptosisinducing factor (AIF) release, Cell Death & Differentiation, vol.12, issue.11, pp.1445-1448, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00193588

Y. Wang, V. L. Dawson, and T. M. Dawson, Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos, Experimental Neurology, vol.218, issue.2, pp.193-202, 2009.

H. Wang, S. W. Yu, D. W. Koh, J. Lew, C. Coombs et al., Apoptosis-inducing factor substitutes for caspase executioners in NMDAtriggered excitotoxic neuronal death, Journal of Neuroscience, vol.24, issue.48, pp.10963-10973, 2004.

E. C. Cheung, L. Melanson-drapeau, S. P. Cregan, J. L. Vanderluit, K. L. Ferguson et al., Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAXindependent mechanisms, Journal of Neuroscience, vol.25, issue.6, pp.1324-1334, 2005.

N. Ishihara, N. Takagi, M. Niimura, K. Takagi, M. Nakano et al., Inhibition of apoptosis-inducing factor translocation is involved in protective effects of hepatocyte growth factor against excitotoxic cell death in cultured hippocampal neurons, Journal of Neurochemistry, vol.95, issue.5, pp.1277-1286, 2005.

W. X. Zong, D. Ditsworth, D. E. Bauer, Z. Q. Wang, and C. B. Thompson, Alkylating DNA damage stimulates a regulated form of necrotic cell death, Genes & Development, vol.18, issue.11, pp.1272-1282, 2004.

C. Hegedus, P. Lakatos, G. Olah, B. I. Toth, S. Gergely et al., Protein kinase C protects from DNA damage-induced necrotic cell death by inhibiting poly(ADP-ribose) polymerase-1, FEBS Letters, vol.582, issue.12, pp.1672-1678, 2008.

Y. Wang, N. S. Kim, X. Li, P. A. Greer, R. C. Koehler et al., Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos), Journal of Neurochemistry, vol.110, issue.2, pp.687-696, 2009.

D. Arnoult, P. Parone, J. C. Martinou, B. Antonsson, J. Estaquier et al., Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli, The Journal of Cell Biology, vol.159, issue.6, pp.923-929, 2002.

C. Munoz-pinedo, A. Guio-carrion, J. C. Goldstein, P. Fitzgerald, D. D. Newmeyer et al., Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration, Proceedings of the National Academy of Sciences of the U S A, vol.103, issue.31, pp.11573-11578, 2006.

N. Joza, S. A. Susin, E. Daugas, W. L. Stanford, S. K. Cho et al., Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death, Nature, vol.410, issue.6828, pp.549-554, 2001.

M. F. Lyon and S. Rastan, Parental source of chromosome imprinting and its relevance for X chromosome inactivation, Differentiation, vol.26, issue.1, pp.63-67, 1984.

E. Heard, Recent advances in X-chromosome inactivation, Current Opinion in Cell Biology, vol.16, issue.3, pp.247-255, 2004.

W. K. Krietsch, R. Fundele, G. W. Kuntz, M. Fehlau, K. Burki et al., The expression of X-linked phosphoglycerate kinase in the early mouse embryo, Differentiation, vol.23, issue.2, pp.141-144, 1982.

H. Banerjee, A. Das, S. Srivastava, H. R. Mattoo, K. Thyagarajan et al., A role for apoptosis-inducing factor in T cell development, Journal of Experimental Medicine, vol.209, issue.9, pp.1641-1653, 2012.

X. Peng, Q. Lin, Y. Liu, Y. Jin, J. E. Druso et al., Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice, Protein Cell, vol.4, issue.3, pp.231-242, 2013.

O. K. Appelbe, B. Bollman, A. Attarwala, L. A. Triebes, H. Muniz-talavera et al., Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus, Developmental Biology, vol.382, issue.1, pp.172-185, 2013.

L. Wyss, J. Schafer, S. Liebner, M. Mittelbronn, U. Deutsch et al., Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus, PloS One, vol.7, issue.9, p.45619, 2012.

R. Park, U. Y. Moon, J. Y. Park, L. J. Hughes, R. L. Johnson et al., Yap is required for ependymal integrity and is suppressed in LPAinduced hydrocephalus, Nature Communications, vol.7, p.10329, 2016.

M. Cao and J. I. Wu, Camk2a-Cre-mediated conditional deletion of chromatin remodeler Brg1 causes perinatal hydrocephalus, Neuroscience Letters, vol.597, pp.71-76, 2015.

P. Vogel, R. W. Read, G. M. Hansen, B. J. Payne, D. Small et al., Congenital hydrocephalus in genetically engineered mice, Veterinary Pathology Online, vol.49, issue.1, pp.166-181, 2012.

S. Parikh, R. Saneto, M. J. Falk, I. Anselm, B. H. Cohen et al., A modern approach to the treatment of mitochondrial disease, Current Treatment Options in Neurology, vol.11, issue.6, pp.414-430, 2009.

R. K. Olsen, S. E. Olpin, B. S. Andresen, Z. H. Miedzybrodzka, M. Pourfarzam et al., ETFDH mutations as a major cause of riboflavinresponsive multiple acyl-CoA dehydrogenation deficiency, Brain, vol.130, pp.2045-2054, 2007.

S. Avula, S. Parikh, S. Demarest, J. Kurz, and A. Gropman, Treatment of mitochondrial disorders, Current Treatment Options in Neurology, vol.16, issue.6, p.292, 2014.