M. Achtman, Evolution, population structure, and phylogeography of 536 genetically monomorphic bacterial pathogens, Annu Rev Microbiol, vol.62, pp.53-70, 2008.

R. Adgamov, E. Zaytseva, J. M. Thiberge, S. Brisse, and S. Ermolaeva, 538 Genetically related Listeria monocytogenes strains isolated from lethal human cases 539 and wild animals, Genetic Diversity in 540 Microorganisms, pp.235-250, 2012.

J. A. Carrico, C. Silva-costa, J. Melo-cristino, F. R. Pinto, and H. De-lencastre, J. S

M. Almeida and . Ramirez, Illustration of a common framework for relating 543 multiple typing methods by application to macrolide-resistant Streptococcus pyogenes, J Clin Microbiol, vol.544, pp.2524-2556, 2006.

Y. Chen and S. J. Knabel, Prophages in Listeria monocytogenes contain 546 single-nucleotide polymorphisms that differentiate outbreak clones within epidemic 547 clones, J Clin Microbiol, vol.46, pp.1478-84, 2008.

Y. Chen, W. Zhang, and S. J. Knabel, Multi-virulence-locus sequence typing 549 clarifies epidemiology of recent listeriosis outbreaks in the United States, J Clin 550 Microbiol, vol.43, pp.5291-5295, 2005.

Y. Chen, W. Zhang, S. J. Knabel, ;. , L. Diancourt et al., Multi-virulence-locus sequence typing 552 identifies single nucleotide polymorphisms which differentiate epidemic clones and 553 outbreak strains of Listeria monocytogenes, J Clin Microbiol, vol.45, p.555, 2007.

A. Bracq-dieye, C. Leclercq, M. Pourcel, S. Lecuit, V. Brisse-;-chenal-francisque et al., An 556 optimized MLVA assay and its complementarity with PFGE and MLST for Listeria 557 monocytogenes clone identification and surveillance, J Clin Microbiol, vol.558, issue.8, p.559, 2013.

S. Lecuit and . Brisse, Worldwide distribution of major clones of Listeria 560 monocytogenes, Emerg Infect Dis, vol.17, pp.1110-1112, 2011.

Y. Cheng, J. W. Kim, S. Lee, R. M. Siletzky, and S. Kathariou, DNA probes 562 for unambiguous identification of Listeria monocytogenes epidemic clone II strains, 2010.

H. C. Den-bakker, B. N. Bundrant, E. D. Fortes, R. H. Orsi, and M. Wiedmann, A population genetics-based and phylogenetic approach to understanding the 566 evolution of virulence in the genus Listeria, Appl Environ Microbiol, vol.76, pp.6085-100, 2010.

. Wiedmann-;-den, H. C. Bakker, E. D. Fortes, and M. Wiedmann, Multilocus sequence 571 typing of outbreak-associated Listeria monocytogenes isolates to identify epidemic 572 clones, Foodborne Pathog Dis, vol.8, p.13, 2008.

J. Denny and J. Mclauchlin, Human Listeria monocytogenes infections in 574, 2008.

, Europe--an opportunity for improved European surveillance, Euro Surveill, vol.13, p.14

O. Disson, S. Grayo, E. Huillet, G. Nikitas, F. Langa-vives et al., , p.576

A. L. Ragon, C. Monnier, P. Babinet, M. Cossart, and . Lecuit, Conjugated 577 action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.578, p.15, 2008.

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin, 580 Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J Clin 581 Microbiol, vol.42, pp.3819-3841, 2004.

, Institut Pasteur -CeRIS

T. F. Ducey, B. Page, T. Usgaard, M. K. Borucki, K. Pupedis et al., A single-nucleotide-polymorphism-based multilocus genotyping assay for 584 subtyping lineage I isolates of Listeria monocytogenes, Appl Environ Microbiol, vol.583, p.17, 2007.

M. R. Evans, B. Swaminathan, L. M. Graves, E. Altermann, and T. R. ,

R. C. Klaenhammer, S. Fink, S. Kernodle, and . Kathariou, Genetic markers 588 unique to Listeria monocytogenes serotype 4b differentiate epidemic clone II (hot dog 589 outbreak strains) from other lineages, Appl Environ Microbiol, vol.70, p.18, 2004.

E. J. Feil, Small change: keeping pace with microevolution, Nat. Rev. 591 Microbiol, vol.2, pp.483-95, 2004.

P. A. Fields and G. N. Somero, Hot spots in cold adaptation: localized 593 increases in conformational flexibility in lactate dehydrogenase A4 orthologs of 594 Antarctic notothenioid fishes, Proc Natl Acad Sci U S A, vol.95, pp.11476-81, 1998.

E. Fugett, E. Fortes, C. Nnoka, and M. Wiedmann, International Life 596 Sciences Institute North America Listeria monocytogenes Strain Collection: 597 Development of Standard Listeria monocytogenes Strain Sets for Research and 598 Validation Studies, J. Food Prot, vol.69, p.21, 2006.

J. L. Gaillard, P. Berche, C. Frehel, E. Gouin, and P. Cossart, Entry of 600 Listeria monocytogenes into cells is mediated by internalin, a repeat protein 601 reminiscent of surface antigens from gram-positive cocci, Cell, vol.65, p.22, 1991.

M. W. Gilmour, M. Graham, G. Van-domselaar, S. Tyler, H. Kent et al., , p.603

O. Yakel, V. Larios, B. Allen, C. Lee, and . Nadon, High-throughput genome 604 sequencing of two Listeria monocytogenes clinical isolates during a large foodborne 605 outbreak, BMC Genomics, vol.11, p.23, 2010.

V. Goulet, C. Hedberg, A. L. Monnier, and H. De-valk, Increasing 607 incidence of listeriosis in France and other European countries, Emerg Infect Dis, vol.608, p.24, 2008.

L. M. Graves and B. Swaminathan, PulseNet standardized protocol for 610 subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel 611 electrophoresis, Int J Food Microbiol, vol.65, p.25, 2001.

C. Jacquet, M. Doumith, J. I. Gordon, P. M. Martin, P. Cossart et al., A molecular marker for evaluating the pathogenic potential of foodborne 614 Listeria monocytogenes, J Infect Dis, vol.613, p.26, 2004.

R. Jonquieres, H. Bierne, J. Mengaud, and P. Cossart, The inlA gene of 616 Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of 617 internalin, Infect Immun, vol.66, p.27, 1998.

S. Kathariou, Foodborne outbreaks of listeriosis and epidemic-associated 619 lineages of Listeria monocytogenes, vol.622, p.28, 2003.

S. Kathariou, Listeria monocytogenes virulence and pathogenicity, a food 623 safety perspective, J Food Prot, vol.65, p.29, 2002.

S. J. Knabel, A. Reimer, B. Verghese, M. Lok, J. Ziegler et al., , p.625

M. Graham, C. A. Nadon, and M. W. Gilmour, Sequence typing confirms 626 that a predominant Listeria monocytogenes clone caused human listeriosis cases and 627 outbreaks in Canada from 1988 to 2010, J Clin Microbiol, vol.50, p.30, 2012.

M. M. Koopmans, M. C. Brouwer, M. W. Bijlsma, S. Bovenkerk, W. Keijzers et al., Listeria monocytogenes Sequence Type 6 630 and Increased Rate of Unfavorable Outcome in Meningitis: Epidemiologic Cohort 631 Study, Clin Infect Dis, vol.57, pp.247-53, 2013.

M. Kuhn, S. Kathariou, and W. Goebel, Hemolysin supports survival but not 633 entry of the intracellular bacterium Listeria monocytogenes, Infect Immun, vol.56, p.32, 1988.

M. Lebrun, J. Mengaud, H. Ohayon, F. Nato, and P. Cossart, Internalin 635 must be on the bacterial surface to mediate entry of Listeria monocytogenes into 636 epithelial cells, Mol Microbiol, vol.21, p.33, 1996.

A. Leclercq, V. Chenal-francisque, H. Dieye, T. Cantinelli, R. Drali et al., Characterization of the novel Listeria monocytogenes PCR 639 serogrouping profile IVb-v1, Int J Food Microbiol, vol.147, p.34, 2011.

M. Lecuit, H. Ohayon, L. Braun, J. Mengaud, and P. Cossart, Internalin of 641 Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to 642 promote internalization, Infect Immun, vol.65, p.35, 1997.

M. Lecuit, S. Vandormael-pournin, J. Lefort, M. Huerre, P. Gounon et al., , p.644

C. Babinet and P. Cossart, A transgenic model for listeriosis: role of 645 internalin in crossing the intestinal barrier, Science, vol.292, p.36, 2001.

P. Librado and J. Rozas, DnaSP v5: a software for comprehensive analysis of 647 DNA polymorphism data, Bioinformatics, vol.25, p.37, 2009.

S. Lomonaco, Y. Chen, and S. J. Knabel, Analysis of additional virulence 649 genes and virulence gene regions in Listeria monocytogenes confirms the 650 epidemiologic relevance of multi-virulence-locus sequence typing, J Food Prot, vol.651, p.38, 2008.

S. Lomonaco, B. Verghese, P. Gerner-smidt, C. Tarr, L. Gladney et al.,

M. Katz, M. Turnsek, Y. Frace, E. Chen, R. Brown et al., Novel epidemic clones of Listeria monocytogenes, United 655 States, Emerg Infect Dis, vol.19, p.39, 2011.

M. C. Maiden, Multilocus sequence typing of bacteria, Annu Rev Microbiol, vol.657, p.40, 2006.

G. Mcvean, P. Awadalla, and P. Fearnhead, A coalescent-based method for 659 detecting and estimating recombination from gene sequences, Genetics, vol.160, p.41, 2002.

E. G. Murray, R. A. Webb, and M. B. Swann, A disease of rabbits 661 characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed 662 bacillus Bacterium monocytogenes (n.sp.), The Journal of Pathology and Bacteriology, vol.663, pp.407-439, 1926.

K. K. Nightingale, R. A. Ivy, A. J. Ho, E. D. Fortes, B. L. Njaa et al., inlA premature stop codons are common among Listeria 666 monocytogenes isolates from foods and yield virulence-attenuated strains that confer 667 protection against fully virulent strains, Appl Environ Microbiol, vol.74, p.43, 2008.

R. E. Nilsson, T. Ross, J. P. Bowman, and M. L. Britz, MudPIT profiling 669 reveals a link between anaerobic metabolism and the alkaline adaptive response of 670 Listeria monocytogenes EGD-e, PLoS One, vol.8, p.44, 2013.

F. Orskov and I. Orskov, From the national institutes of health. Summary of 672 a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the 673 enterobacteriaceae and other bacteria, J Infect Dis, vol.148, p.45, 1983.

A. Parisi, L. Latorre, G. Normanno, A. Miccolupo, R. Fraccalvieri et al., Amplified Fragment Length Polymorphism and Multi, p.676, 2010.

, Locus Sequence Typing for high-resolution genotyping of Listeria monocytogenes 677 from foods and the environment, Food Microbiol, vol.27, p.46

J. C. Piffaretti, H. Kressebuch, M. Aeschbacher, J. Bille, E. Bannerman et al., , p.679

R. K. Musser, J. Selander, and . Rocourt, Genetic characterization of clones of 680 the bacterium Listeria monocytogenes causing epidemic disease, Proc Natl Acad Sci U 681 S A, vol.86, pp.3818-3840, 1989.

, Institut Pasteur -CeRIS

M. Ragon, T. Wirth, F. Hollandt, R. Lavenir, M. Lecuit et al.,

. Brisse, A new perspective on Listeria monocytogenes evolution, PLoS Pathog, vol.684, p.48, 2008.

A. Roetzer, R. Diel, T. A. Kohl, C. Ruckert, U. Nubel et al., , p.686

S. Jaenicke, S. Schuback, P. Rusch-gerdes, J. Supply, and S. Kalinowski,

. Niemann, Whole genome sequencing versus traditional genotyping for 688 investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular 689 epidemiological study, PLoS Med, vol.10, p.49, 2013.

C. Salcedo, L. Arreaza, B. Alcala, L. De-la-fuente, and J. A. Vazquez, 691 Development of a multilocus sequence typing method for analysis of Listeria 692 monocytogenes clones, J Clin Microbiol, vol.41, pp.757-62, 2003.

K. E. Sperry, S. Kathariou, J. S. Edwards, and L. A. Wolf, Multiple-locus 694 variable-number tandem-repeat analysis as a tool for subtyping Listeria 695 monocytogenes strains, J Clin Microbiol, vol.46, p.51, 2008.

F. C. Tenover, R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray et al., , p.697

B. Persing and . Swaminathan, Interpreting chromosomal DNA restriction 698 patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain 699 typing, J Clin Microbiol, vol.33, p.52, 1995.

L. Travier, S. Guadagnini, E. Gouin, A. Dufour, V. Chenal-francisque et al.,

J. C. Cossart, J. M. Olivo-marin, O. Ghigo, M. Disson, and . Lecuit, ActA 702 promotes Listeria monocytogenes aggregation, 2013.

, PLoS Pathog, vol.9, pp.1003131-704

P. Wang, H. Yang, Y. Hu, F. Yuan, G. Zhao et al., 705 Characterization of Listeria monocytogenes isolates in import food products of China 706 from 8 provinces between, J Food Sci, vol.77, p.54, 2005.

Y. Wang, A. Zhao, R. Zhu, R. Lan, D. Jin et al., 708 Genetic diversity and molecular typing of Listeria monocytogenes in China, BMC 709 Microbiol, vol.12, p.119, 2012.

T. J. Ward, T. Usgaard, and P. Evans, A targeted multilocus genotyping 711 assay for lineage, serogroup, and epidemic clone typing of Listeria monocytogenes, 2010.

, Appl Environ Microbiol, vol.76, p.56

M. Wiedmann, J. L. Bruce, C. Keating, A. E. Johnson, P. L. Mcdonough et al.,

A. Batt, Ribotypes and virulence gene polymorphisms suggest three distinct 715 Listeria monocytogenes lineages with differences in pathogenic potential, vol.65, pp.2707-2723, 1997.

D. J. Wilson and G. Mcvean, Estimating diversifying selection and 718 functional constraint in the presence of recombination, Genetics, vol.172, p.58, 2006.

S. Yildirim, W. Lin, A. D. Hitchins, L. A. Jaykus, and E. Altermann,

S. Klaenhammer and . Kathariou, Epidemic clone I-specific genetic markers 721 in strains of Listeria monocytogenes serotype 4b from foods, Appl Environ Microbiol, vol.722, p.59, 2004.

W. Zhang, B. M. Jayarao, and S. J. Knabel, Multi-virulence-locus sequence 724 typing of Listeria monocytogenes, Appl Environ Microbiol, vol.70, p.60, 2004.

Z. Zhou, A. Mccann, E. Litrup, R. Murphy, M. Cormican et al.,

D. S. Brown, S. Guttman, M. Brisse, and . Achtman, Neutral genomic 727 microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona, 2013.

, PLoS Genet, vol.9, p.1003471

, Institut Pasteur -CeRIS