F. D. Lowy, Staphylococcus aureus infections, N Engl J Med, vol.339, pp.520-532, 1998.

M. Z. David and R. S. Daum, Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic, Clin Microbiol Rev, vol.23, pp.616-687, 2010.

H. F. Wertheim, D. C. Melles, M. C. Vos, W. Van-leeuwen, A. Van-belkum et al., The role of nasal carriage in Staphylococcus aureus infections, Lancet Infect Dis, vol.5, issue.05, pp.70295-70299, 2005.

A. Van-belkum, N. J. Verkaik, C. P. De-vogel, H. A. Boelens, J. Verveer et al., Reclassification of Staphylococcus aureus nasal carriage types, J Infect Dis, vol.199, pp.1820-1826, 2009.

A. L. Cheung, A. S. Bayer, G. Zhang, H. Gresham, and Y. Q. Xiong, Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus, FEMS Immunol Med Microbiol, vol.40, issue.03, pp.309-311, 2004.

A. Tomasini, P. Francois, B. P. Howden, P. Fechter, P. Romby et al., The importance of regulatory RNAs in Staphylococcus aureus, Infect Genet Evol, vol.21, pp.616-626, 2014.

L. Tuchscherr and B. Löffler, Staphylococcus aureus dynamically adapts global regulators and virulence factor expression in the course from acute to chronic infection, Curr Genet, vol.62, pp.15-17, 2016.

C. Goerke, J. Koller, and C. Wolz, Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus, Antimicrob Agents Chemother, vol.50, pp.171-177, 2006.

C. Goerke, C. Wirtz, U. Fluckiger, and C. Wolz, Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection, Mol Microbiol, vol.61, pp.1673-1685, 2006.

W. Salgado-pabon, A. Herrera, B. G. Vu, C. S. Stach, J. A. Merriman et al., Staphylococcus aureus beta-toxin production is common in strains with the beta-toxin gene inactivated by bacteriophage, J Infect Dis, vol.210, pp.784-792, 2014.

A. T. Giraudo, A. Calzolari, A. A. Cataldi, C. Bogni, and R. Nagel, The sae locus of Staphylococcus aureus encodes a two-component regulatory system, FEMS Microbiol Lett, vol.177, pp.15-22, 1999.

D. W. Jeong, H. Cho, M. B. Jones, K. Shatzkes, F. Sun et al., The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus, Mol Microbiol, vol.86, pp.331-348, 2012.

T. Mascher, Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception, Trends Microbiol, vol.22, pp.559-565, 2014.

Q. Liu, W. S. Yeo, and T. Bae, The SaeRS two-component system of Staphylococcus aureus, Genes (Basel), vol.7, p.81, 2016.

H. Cho, D. W. Jeong, Q. Liu, W. S. Yeo, T. Vogl et al., Calprotectin increases the activity of the SaeRS two component system and murine mortality during Staphylococcus aureus infections, PLoS Pathog, vol.11, 2015.

T. Geiger, C. Goerke, M. Mainiero, D. Kraus, and C. Wolz, The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals, J Bacteriol, vol.190, pp.3419-3428, 2008.

A. Delaune, S. Dubrac, C. Blanchet, O. Poupel, U. Mäder et al., The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response, Infect Immun, vol.80, pp.3438-3453, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651481

O. Poupel, C. Proux, B. Jagla, T. Msadek, and S. Dubrac, SpdC, a novel virulence factor, controls histidine kinase activity in Staphylococcus aureus, PLoS Pathog, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02613930

M. Mainiero, C. Goerke, T. Geiger, C. Gonser, S. Herbert et al., Differential target gene activation by the Staphylococcus aureus twocomponent system saeRS, J Bacteriol, vol.192, pp.613-623, 2010.

A. T. Giraudo, A. L. Cheung, and R. Nagel, The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level, Arch Microbiol, vol.168, pp.53-58, 1997.

N. Harraghy, J. Kormanec, C. Wolz, D. Homerova, C. Goerke et al., sae is essential for expression of the staphylococcal adhesins, Eap and Emp. Microbiology, vol.151, pp.1789-1800, 2005.

H. Kuroda, M. Kuroda, L. Cui, and K. Hiramatsu, Subinhibitory concentrations of beta-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS two-component system, FEMS Microbiol Lett, vol.268, pp.98-105, 2007.

X. Liang, C. Yu, J. Sun, H. Liu, C. Landwehr et al., Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus, Infect Immun, vol.74, pp.4655-4665, 2006.

M. E. Olson, T. K. Nygaard, L. Ackermann, R. L. Watkins, O. W. Zurek et al., Staphylococcus aureus nuclease is an SaeRSdependent virulence factor, Infect Immun, vol.81, pp.1316-1324, 2013.

K. Rogasch, V. Ruhmling, J. Pane-farre, D. Höper, C. Weinberg et al., Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains, J Bacteriol, vol.188, pp.7742-7758, 2006.

S. H. Rooijakkers, M. Ruyken, J. Van-roon, K. P. Van-kessel, J. A. Van-strijp et al., Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus, Cell Microbiol, vol.8, pp.1282-1293, 2006.

A. Steinhuber, C. Goerke, M. G. Bayer, G. Doring, and C. Wolz, Molecular architecture of the regulatory locus sae of Staphylococcus aureus and its impact on expression of virulence factors, J Bacteriol, vol.185, pp.6278-6286, 2003.

L. Münzenmayer, T. Geiger, E. Daiber, B. Schulte, S. E. Autenrieth et al., Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages, Cell Microbiol, vol.18, pp.1172-1183, 2016.

A. N. Spaan, B. G. Surewaard, R. Nijland, and J. A. Van-strijp, Neutrophils versus Staphylococcus aureus: a biological tug of war, Annu Rev Microbiol, vol.67, pp.629-650, 2013.

L. Thomer, O. Schneewind, and D. Missiakas, Pathogenesis of Staphylococcus aureus bloodstream infections, Annu Rev Pathol, vol.11, pp.343-364, 2016.

B. Sinha and M. Fraunholz, Staphylococcus aureus host cell invasion and post-invasion events, Int J Med Microbiol, vol.300, pp.170-175, 2010.

A. Ray-soni, M. J. Bellecourt, and R. Landick, Mechanisms of bacterial transcription termination: all good things must end, Annu Rev Biochem, vol.85, pp.319-347, 2016.

F. D'heygere, M. Rabhi, and M. Boudvillain, Phyletic distribution and conservation of the bacterial transcription termination factor Rho, vol.159, pp.1423-1436, 2013.

A. Grylak-mielnicka, V. Bidnenko, J. Bardowski, and E. Bidnenko, Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria, Microbiology, vol.162, pp.433-447, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636523

H. Gaillard and A. Aguilera, Transcription as a threat to genome integrity, Annu Rev Biochem, vol.85, pp.291-317, 2016.

D. Dutta, K. Shatalin, V. Epshtein, M. E. Gottesman, and E. Nudler, Linking RNA polymerase backtracking to genome instability in E. coli, Cell, vol.146, pp.533-543, 2011.

J. K. Leela, A. H. Syeda, K. Anupama, and J. Gowrishankar, Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli, Proc Natl Acad Sci U S A, vol.110, pp.258-263, 2013.

R. S. Washburn and M. E. Gottesman, Transcription termination maintains chromosome integrity, Proc Natl Acad Sci U S A, vol.108, pp.792-797, 2011.

P. G. Quirk, E. A. Dunkley, . Jr, P. Lee, and T. A. Krulwich, Identification of a putative Bacillus subtilis rho gene, J Bacteriol, vol.175, pp.647-654, 1993.

R. S. Washburn, A. Marra, A. P. Bryant, M. Rosenberg, and D. R. Gentry, rho is not essential for viability or virulence in Staphylococcus aureus, Antimicrob Agents Chemother, vol.45, pp.1099-1103, 2001.

H. Kohn and W. Widger, The molecular basis for the mode of action of bicyclomycin, Curr Drug Targets Infect Disord, vol.5, pp.273-295, 2005.

A. Zwiefka, H. Kohn, and W. R. Widger, Transcription termination factor rho: the site of bicyclomycin inhibition in Escherichia coli, Biochemistry, vol.32, pp.3564-3570, 1993.

M. Nishida, Y. Mine, T. Matsubara, S. Goto, and S. Kuwahara, Bicyclomycin, a new antibiotic. 3. In vitro and in vivo antimicrobial activity, J Antibiot (Tokyo), vol.25, pp.582-593, 1972.

A. Das, D. Court, and S. Adhya, Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho, Proc Natl Acad Sci U S A, vol.73, pp.1959-1963, 1976.

C. D. Ericsson, H. L. Dupont, P. Sullivan, E. Galindo, D. G. Evans et al., Inhibition of S. aureus Rho Increases Virulence Gene Expression 1983. Bicozamycin, a poorly absorbable antibiotic, effectively treats travelers' diarrhea, Ann Intern Med, vol.98, pp.20-25

M. Malik, L. Li, X. Zhao, R. J. Kerns, J. M. Berger et al., Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics, J Antimicrob Chemother, vol.69, pp.3227-3235, 2014.

U. Mäder, P. Nicolas, M. Depke, J. Pané-farré, M. Debarbouille et al., Staphylococcus aureus transcriptome architecture: from laboratory to infection-mimicking conditions, PLoS Genet, vol.12, 2016.

J. M. Peters, R. A. Mooney, J. A. Grass, E. D. Jessen, F. Tran et al., Rho and NusG suppress pervasive antisense transcription in Escherichia coli, Genes Dev, vol.26, pp.2621-2633, 2012.

P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc et al., Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis, Science, vol.335, pp.1103-1106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000245

L. Botella, J. Vaubourgeix, J. Livny, and D. Schnappinger, Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death, Nat Commun, vol.8, p.14731, 2017.

D. A. Ravcheev, A. A. Best, N. Tintle, M. Dejongh, A. L. Osterman et al., Inference of the transcriptional regulatory network in Staphylococcus aureus by integration of experimental and genomicsbased evidence, J Bacteriol, vol.193, pp.350-361, 2011.

S. Fuchs, H. Mehlan, J. Bernhardt, A. Hennig, S. Michalik et al., AureoWiki-the repository of the Staphylococcus aureus research and annotation community, Int J Med Microbiol, vol.308, pp.558-568, 2017.

M. Flock and J. I. Flock, Rebinding of extracellular adherence protein Eap to Staphylococcus aureus can occur through a surface-bound neutral phosphatase, J Bacteriol, vol.183, pp.3999-4003, 2001.

R. P. Novick and D. Jiang, The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing, Microbiology, vol.149, pp.2709-2717, 2003.

J. M. Voyich, C. Vuong, M. Dewald, T. K. Nygaard, S. Kocianova et al., The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus, J Infect Dis, vol.199, pp.1698-1706, 2009.

K. E. Beenken, L. N. Mrak, A. K. Zielinska, D. N. Atwood, A. J. Loughran et al., Impact of the functional status of saeRS on in vivo phenotypes of Staphylococcus aureus sarA mutants, Mol Microbiol, vol.92, pp.1299-1312, 2014.

W. L. Nowatzke, E. Keller, G. Koch, and J. P. Richardson, Transcription termination factor Rho is essential for Micrococcus luteus, J Bacteriol, vol.179, pp.5238-5240, 1997.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism, PLoS Pathog, vol.7, p.1002251, 2011.

F. D'heygere, A. Schwartz, F. Coste, B. Castaing, and M. Boudvillain, ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis, Nucleic Acids Res, vol.43, pp.6099-6111, 2015.

J. Ederth, R. A. Mooney, L. A. Isaksson, and R. Landick, Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket, J Mol Biol, vol.356, pp.1163-1179, 2006.

V. Bidnenko, P. Nicolas, A. Grylak-mielnicka, O. Delumeau, S. Auger et al., Termination factor Rho: from the control of pervasive transcription to cell fate determination in Bacillus subtilis, PLoS Genet, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608054

S. Mondal, A. V. Yakhnin, A. Sebastian, I. Albert, and P. Babitzke, NusAdependent transcription termination prevents misregulation of global gene expression, Nat Microbiol, vol.1, p.15007, 2016.

N. Sedlyarova, I. Shamovsky, B. K. Bharati, V. Epshtein, J. Chen et al., sRNA-mediated control of transcription termination in E. coli, Cell, vol.167, pp.111-121, 2016.

Q. Liu, H. Cho, W. S. Yeo, and T. Bae, The extracytoplasmic linker peptide of the sensor protein SaeS tunes the kinase activity required for staphylococcal virulence in response to host signals, PLoS Pathog, vol.11, 2015.

R. Biswas, L. Voggu, U. K. Simon, P. Hentschel, G. Thumm et al., Activity of the major staphylococcal autolysin Atl, FEMS Microbiol Lett, vol.259, pp.260-268, 2006.

K. C. Rice, E. E. Mann, J. L. Endres, E. C. Weiss, J. E. Cassat et al., The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus, Proc Natl Acad Sci U S A, vol.104, pp.8113-8118, 2007.

M. T. Nguyen, A. Luqman, K. Bitschar, T. Hertlein, J. Dick et al., Staphylococcal (phospho)lipases promote biofilm formation and host cell invasion, Int J Med Microbiol, vol.308, pp.653-663, 2017.

C. J. Cardinale, R. S. Washburn, V. R. Tadigotla, L. M. Brown, M. E. Gottesman et al., Termination factor Rho and its cofactors NusA and NusG silence foreign, DNA in E. coli. Science, vol.320, pp.935-938, 2008.

E. Hodille, W. Rose, B. A. Diep, S. Goutelle, G. Lina et al., The role of antibiotics in modulating virulence in Staphylococcus aureus, Clin Microbiol Rev, vol.30, pp.887-917, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911294

K. Bernardo, N. Pakulat, S. Fleer, A. Schnaith, O. Utermohlen et al., Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression, Antimicrob Agents Chemother, vol.48, pp.546-555, 2004.

B. A. Diep, A. Afasizheva, H. N. Le, O. Kajikawa, G. Matute-bello et al., Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia, J Infect Dis, vol.208, pp.75-82, 2013.

O. Dumitrescu, S. Boisset, C. Badiou, M. Bes, Y. Benito et al., Effect of antibiotics on Staphylococcus aureus producing Panton-Valentine leukocidin, Antimicrob Agents Chemother, vol.51, pp.1515-1519, 2007.

M. P. Otto, E. Martin, C. Badiou, S. Lebrun, M. Bes et al., Effects of subinhibitory concentrations of antibiotics on virulence factor expression by community-acquired methicillin-resistant Staphylococcus aureus, J Antimicrob Chemother, vol.68, pp.1524-1532, 2013.

D. L. Stevens, Y. Ma, D. B. Salmi, E. Mcindoo, R. J. Wallace et al., Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus, J Infect Dis, vol.195, pp.202-211, 2007.

K. Ohlsen, W. Ziebuhr, K. P. Koller, W. Hell, T. A. Wichelhaus et al., Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates, Antimicrob Agents Chemother, vol.42, pp.2817-2823, 1998.

O. Dumitrescu, P. Choudhury, S. Boisset, C. Badiou, M. Bes et al., Beta-lactams interfering with PBP1 induce Panton-Valentine leukocidin expression by triggering sarA and rot global regulators of Staphylococcus aureus, Antimicrob Agents Chemother, vol.55, pp.3261-3271, 2011.

S. Herbert, A. K. Ziebandt, K. Ohlsen, T. Schäfer, M. Hecker et al., Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates, Infect Immun, vol.78, pp.2877-2889, 2010.

M. A. Sullivan, R. E. Yasbin, and F. E. Young, New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments, Gene, vol.29, pp.21-26, 1984.

C. Sizemore, E. Buchner, T. Rygus, C. Witke, F. Götz et al., Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon, Mol Gen Genet, vol.227, pp.377-384, 1991.

F. Bonn, J. Bartel, K. Büttner, M. Hecker, A. Otto et al., Picking vanished proteins from the void: how to collect and ship/share extremely dilute proteins in a reproducible and highly efficient manner, Anal Chem, vol.86, pp.7421-7427, 2014.

M. Pietzner, B. Engelmann, T. Kacprowski, J. Golchert, A. L. Dirk et al., Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model, BMC Med, vol.15, 2017.

S. Michalik, M. Depke, A. Murr, G. Salazar, M. Kusebauch et al., A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions, Sci Rep, vol.7, 2017.

E. W. Deutsch, L. Mendoza, D. Shteynberg, T. Farrah, H. Lam et al., Aebersold R. 2010. A guided tour of the Trans-Proteomic Pipeline, Proteomics, vol.10, pp.1150-1159

A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem, vol.74, pp.5383-5392, 2002.

D. Shteynberg, E. W. Deutsch, H. Lam, J. K. Eng, Z. Sun et al., iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates, Mol Cell Proteomics, vol.10, 2011.

L. Reiter, M. Claassen, S. P. Schrimpf, M. Jovanovic, A. Schmidt et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry, Mol Cell Proteomics, vol.8, pp.2405-2417, 2009.

G. Homuth, S. Masuda, A. Mogk, Y. Kobayashi, and W. Schumann, The dnaK operon of Bacillus subtilis is heptacistronic, J Bacteriol, vol.179, pp.1153-1164, 1997.

U. Mäder and N. P. , Array-based approaches to bacterial transcriptome analysis, Methods in microbiology, vol.39, pp.151-182, 2012.