O. Bohuszewicz, J. Liu, and H. H. Low, Membrane remodelling in bacteria, J. Struct. Biol, vol.196, pp.3-14, 2016.

E. M. Fozo and E. A. Rucks, The making and taking of lipids: The role of bacterial lipid synthesis and the harnessing of host lipids in bacterial pathogenesis, Adv. Microb. Physiol, vol.69, pp.51-155, 2016.

A. Singh and M. D. Poeta, Lipid signalling in pathogenic fungi, Cell. Microbiol, vol.13, pp.177-185, 2011.

R. N. Fields and H. Roy, Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances, RNA Biol, vol.15, pp.480-491, 2018.

M. Ibba and D. Soll, Aminoacyl-tRNA synthesis, Annu. Rev. Biochem, vol.69, pp.617-650, 2000.

S. Hebecker, Structures of two bacterial resistance factors mediating tRNAdependent aminoacylation of phosphatidylglycerol with lysine or alanine, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.10691-10696, 2015.

C. Slavetinsky, S. Kuhn, and A. Peschel, Bacterial aminoacyl phospholipids-Biosynthesis and role in basic cellular processes and pathogenicity, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1862, pp.1310-1318, 2017.

W. Arendt, M. K. Groenewold, S. Hebecker, J. S. Dickschat, and J. Moser, Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis, J. Biol. Chem, vol.288, pp.24717-24730, 2013.

A. M. Smith, J. S. Harrison, K. M. Sprague, and H. Roy, A conserved hydrolase responsible for the cleavage of aminoacylphosphatidylglycerol in the membrane of Enterococcus faecium, J. Biol. Chem, vol.288, pp.22768-22776, 2013.

M. K. Groenewold, Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB, Mol. Microbiol, vol.111, pp.269-286, 2019.

A. M. Smith, tRNA-dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum, Mol. Microbiol, vol.98, pp.681-693, 2015.

M. Datt and A. Sharma, Novel and unique domains in aminoacyl-tRNA synthetases from human fungal pathogens Aspergillus niger, Candida albicans and Cryptococcus neoformans, BMC Genomics, vol.15, p.1069, 2014.

M. Ruff, Class II aminoacyl transfer RNA synthetases: Crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp), Science, vol.252, pp.1682-1689, 1991.

L. Klug and G. Daum, Yeast lipid metabolism at a glance, FEMS Yeast Res, vol.14, pp.369-388, 2014.

L. Ador, Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth, J. Mol. Biol, vol.288, pp.231-242, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02470169

J. Cavarelli, The active site of yeast aspartyl-tRNA synthetase: Structural and functional aspects of the aminoacylation reaction, EMBO J, vol.13, pp.327-337, 1994.

J. V. Headley, K. M. Peru, B. Verma, and R. D. Robarts, Mass spectrometric determination of ergosterol in a prairie natural wetland, J. Chromatogr. A, vol.958, pp.149-156, 2002.

H. V. Colot, A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.10352-10357, 2006.

K. Mccluskey, A. Wiest, and M. Plamann, The fungal genetics Stock center: A repository for 50 years of fungal genetics research, J. Biosci, vol.35, pp.119-126, 2010.

A. Abad, What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis, Rev. Iberoam. Micol, vol.27, pp.155-182, 2010.

N. Jacquier and R. Schneiter, Mechanisms of sterol uptake and transport in yeast, J. Steroid Biochem. Mol. Biol, vol.129, pp.70-78, 2012.

H. W. Nützmann, C. Scazzocchio, and A. Osbourn, Metabolic gene clusters in eukaryotes, Annu. Rev. Genet, vol.52, pp.159-183, 2018.

S. Debard, Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells, Methods, vol.113, pp.91-104, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01771885

M. L. Rodrigues, The multifunctional fungal ergosterol, MBio, vol.9, pp.1755-1773, 2018.

L. M. Douglas and J. B. Konopka, Fungal membrane organization: The eisosome concept, Annu. Rev. Microbiol, vol.68, pp.377-393, 2014.

M. Kodedová and H. Sychrová, Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae, PLoS One, vol.10, p.139306, 2015.

S. Morioka, Effect of sterol composition on the activity of the yeast G-proteincoupled receptor Ste2, Appl. Microbiol. Biotechnol, vol.97, pp.4013-4020, 2013.

Y. Q. Zhang, Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs, PLoS Pathog, vol.6, p.1000939, 2010.

R. Fischer, N. Zekert, and N. Takeshita, Polarized growth in fungi-Interplay between the cytoskeleton, positional markers and membrane domains, Mol. Microbiol, vol.68, pp.813-826, 2008.

L. Alcazar-fuoli and E. Mellado, Ergosterol biosynthesis in Aspergillus fumigatus: Its relevance as an antifungal target and role in antifungal drug resistance, Front. Microbiol, vol.3, p.439, 2013.

K. Koselny, A genome-wide screen of deletion mutants in the filamentous Saccharomyces cerevisiae background identifies ergosterol as a direct trigger of macrophage pyroptosis, MBio, vol.9, pp.1204-1222, 2018.

T. K. Mazu, B. A. Bricker, H. Flores-rozas, and S. Y. Ablordeppey, The mechanistic targets of antifungal agents: An overview, Mini Rev. Med. Chem, vol.16, pp.555-578, 2016.

D. M. Kami, Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments, Eur. Biophys. J, vol.43, pp.453-467, 2014.

R. Tiwari, R. Köffel, and R. Schneiter, An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae, EMBO J, vol.26, pp.5109-5119, 2007.

R. Nuri, T. Shprung, and Y. Shai, Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides, Biochim. Biophys. Acta, vol.1848, pp.3089-3100, 2015.

J. O. De-craene, D. L. Bertazzi, S. Bär, and S. Friant, Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways, Int. J. Mol. Sci, vol.18, p.634, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01771887

S. Grille, A. Zaslawski, S. Thiele, J. Plat, and D. Warnecke, The functions of steryl glycosides come to those who wait: Recent advances in plants, fungi, bacteria and animals, Prog. Lipid Res, vol.49, pp.262-288, 2010.

T. Kikuma, T. Tadokoro, J. I. Maruyama, and K. Kitamoto, AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae, Biosci. Biotechnol. Biochem, vol.81, pp.384-395, 2017.

S. Yamashita, M. Oku, and Y. Sakai, Functions of PI4P and sterol glucoside are necessary for the synthesis of a nascent membrane structure during pexophagy, Autophagy, vol.3, pp.35-37, 2007.

M. E. Da-silva and . Ferreira, The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus, Eukaryot. Cell, vol.5, pp.207-211, 2006.

M. Machida, Genome sequencing and analysis of Aspergillus oryzae, Nature, vol.438, pp.1157-1161, 2005.

H. Roy and M. Ibba, Monitoring Lys-tRNA(Lys) phosphatidylglycerol transferase activity, Methods, vol.44, pp.164-169, 2008.

S. K. Goswami and C. F. Frey, Manganous chloride spray reagent for cholesterol and bile acids on thin-layer chromatograms, J. Chromatogr. A, vol.53, pp.389-390, 1970.

A. Shokrollahi and F. Firoozbakht, Determination of the acidity constants of neutral red and bromocresol green by solution scanometric method and comparison with spectrophotometric results, Beni. Suef Univ. J. Basic Appl. Sci, vol.5, pp.13-20, 2016.

E. Cífková, R. Hájek, M. Lísa, and M. Hol?apek, Hydrophilic interaction liquid chromatographymass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes, J. Chromatogr. A, vol.1439, pp.65-73, 2016.

G. Keith, J. Gangloff, and G. Dirheimer, Isolement des tRNATyr et tRNAAsp de levure de bière hautement purifiés, Biochimie, vol.53, pp.123-125, 1971.