J. S. Becker, D. Nicetto, and K. S. Zaret, H3K9me3-dependent heterochromatin: Barrier to cell fate changes, Trends Genet, vol.32, pp.29-41, 2016.

M. Borkent, B. D. Bennett, B. Lackford, O. Bar-nur, J. Brumbaugh et al., A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2, Stem Cell Reports, vol.6, pp.704-716, 2016.

L. H. Bussmann, A. Schubert, T. P. Vu-manh, L. De-andres, S. C. Desbordes et al., A robust and highly efficient immune cell reprogramming system, Cell Stem Cell, vol.5, pp.554-566, 2009.

S. Cheloufi, U. Elling, B. Hopfgartner, Y. L. Jung, J. Murn et al., The histone chaperone CAF-1 safeguards somatic cell identity, Nature, vol.528, pp.218-224, 2015.

C. Chronis, P. Fiziev, B. Papp, S. Butz, G. Bonora et al., Cooperative binding of transcription factors orchestrates reprogramming, Cell, vol.168, pp.442-459, 2017.

C. Cubeñ-as-potts and M. J. Matunis, SUMO: A multifaceted modifier of chromatin structure and function, Dev. Cell, vol.24, pp.1-12, 2013.

A. De-iaco, E. Planet, A. Coluccio, S. Verp, J. Duc et al., , 2017.

, DUX-family transcription factors regulate zygotic genome activation in placental mammals, Nat. Genet, vol.49, pp.941-945

A. Decque, O. Joffre, J. G. Magalhaes, J. C. Cossec, R. Blecher-gonen et al., , 2016.

, Sumoylation coordinates the repression of inflammatory and anti-viral geneexpression programs during innate sensing, Nat. Immunol, vol.17, pp.140-149

M. D. Demarque, K. Nacerddine, H. Neyret-kahn, A. Andrieux, E. Danenberg et al., Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice, Gastroenterology, vol.140, pp.286-296, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00572277

Q. Deng, D. Ramskö-ld, B. Reinius, and R. Sandberg, Single-cell RNAseq reveals dynamic, random monoallelic gene expression in mammalian cells, Science, vol.343, pp.193-196, 2014.

A. Dobin and T. R. Gingeras, Mapping RNA-seq reads with STAR, Curr. Protoc. Bioinformatics, vol.51, pp.11-19, 2015.

A. Flotho and F. Melchior, Sumoylation: A regulatory protein modification in health and disease, Annu. Rev. Biochem, vol.82, pp.357-385, 2013.

X. He, J. Riceberg, T. Soucy, E. Koenig, J. Minissale et al., Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor, Nat. Chem. Biol, vol.13, pp.1164-1171, 2017.

P. G. Hendrickson, J. A. Dorá-is, E. J. Grow, J. L. Whiddon, J. W. Lim et al., Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons, Nat. Genet, vol.49, pp.925-934, 2017.

I. A. Hendriks and A. C. Vertegaal, A comprehensive compilation of SUMO proteomics, Nat. Rev. Mol. Cell Biol, vol.17, pp.581-595, 2016.

D. Hnisz, K. Shrinivas, R. A. Young, A. K. Chakraborty, and P. Sharp,

, A Phase Separation Model for Transcriptional Control, Cell, vol.169, pp.13-23

T. Ishiuchi, R. Enriquez-gasca, E. Mizutani, A. Bo-skovi-c, C. Ziegler-birling et al., Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly, Nat. Struct. Mol. Biol, vol.22, pp.662-671, 2015.

A. V. Ivanov, H. Peng, V. Yurchenko, K. L. Yap, D. G. Negorev et al., PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing, Mol. Cell, vol.28, pp.823-837, 2007.

S. Kundu, F. Ji, H. Sunwoo, G. Jain, J. T. Lee et al., Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation, Mol. Cell, vol.65, pp.432-446, 2017.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, 2009.

, Genome Biol, vol.10, p.25

H. W. Liu, J. Zhang, G. F. Heine, M. Arora, H. Ozer et al., Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes, Nucleic Acids Res, vol.40, pp.10172-10186, 2012.

M. I. Love, W. Huber, A. , and S. , Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

T. S. Macfarlan, W. D. Gifford, S. Driscoll, K. Lettieri, H. M. Rowe et al., Embryonic stem cell potency fluctuates with endogenous retrovirus activity, Nature, vol.487, pp.57-63, 2012.

C. Maison, D. Bailly, J. P. Quivy, A. , and G. , The methyltransferase Suv39h1 links the SUMO pathway to HP1a marking at pericentric heterochromatin, Nat. Commun, vol.7, p.12224, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360113

S. Matoba, Y. Liu, F. Lu, K. A. Iwabuchi, L. Shen et al., Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation, Cell, vol.159, pp.884-895, 2014.

T. Matsui, D. Leung, H. Miyashita, I. A. Maksakova, H. Miyachi et al., Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET, Nature, vol.464, pp.927-931, 2010.

Y. Matsumura, R. Nakaki, T. Inagaki, A. Yoshida, Y. Kano et al., H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation, Mol. Cell, vol.60, pp.584-596, 2015.

L. Mosteiro, C. Pantoja, N. Alcazar, R. M. Marió-n, D. Chondronasiou et al., Tissue damage and senescence provide critical signals for cellular reprogramming in vivo, Science, vol.354, p.354, 2016.

L. Mosteiro, C. Pantoja, A. De-martino, and M. Serrano, Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6. Aging Cell, 2017.

K. Nacerddine, F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-tannoudji et al., The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice, Dev. Cell, vol.9, pp.769-779, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-02075525

H. Neyret-kahn, M. Benhamed, T. Ye, S. Le-gras, J. C. Cossec et al., , 2013.

, Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation, Genome Res, vol.23, pp.1563-1579

E. A. Niskanen, M. Malinen, P. Sutinen, S. Toropainen, V. Paakinaho et al., Global SUMOylation on active chromatin is an acute heat stress response restricting transcription, Genome Biol, vol.16, p.153, 2015.

D. A. Orlando, M. W. Chen, V. E. Brown, S. Solanki, Y. J. Choi et al., Quantitative ChIP-Seq normalization reveals global modulation of the epigenome, Cell Rep, vol.9, pp.1163-1170, 2014.

M. Percharde, C. J. Lin, Y. Yin, J. Guan, G. A. Peixoto et al., A LINE1-Nucleolin partnership regulates early development and ESC identity, Cell, vol.174, pp.391-405, 2018.

J. M. Polo, E. Anderssen, R. M. Walsh, B. A. Schwarz, C. M. Nefzger et al., A molecular roadmap of reprogramming somatic cells into iPS cells, Cell, vol.151, pp.1617-1632, 2012.

I. Psakhye, J. , and S. , Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair, Cell, vol.151, pp.807-820, 2012.

D. Rodriguez-terrones, X. Gaume, T. Ishiuchi, A. Weiss, A. Kopp et al., A molecular roadmap for the emergence of early-embryonic-like cells in culture, Nat. Genet, vol.50, pp.106-119, 2018.

, Related to Figure 1. (A) Chromatin profiles of SUMO-1 and SUMO-2 in the region +/-1kb around the SUMO peaks in wild-type MEFs (Ubc9 +/+ ) and in MEFs deprived in sumoylation (Ubc9 -/-), Figure S1. Comparison of the SUMO chromatin landscapes between MEFs and ESCs

. Mefs-(demarque, (B) Genome browser view of SUMO-1 and SUMO-2 at a representative locus in Ubc9 +/+ and Ubc9 -/-MEFs. (C) Spatial distribution of SUMO-2 ChIPseq signal in the region +/-3kb around the SUMO peaks. Peaks are organized top to bottom according to their differential enrichment between MEFs and ESCs, 2011.

, Ontology analysis of genes harbouring MEFspecific SUMO peaks at their TSS. CC = cellular component, MF = molecular function and BP = biological process. (F) Ontology analysis of genes harbouring ESC-specific SUMO peaks at their TSS. (G) Histogram representing the percentage of SUMO peaks overlapping with common H3K27ac and H3K4me1 peaks and with H3K9me3 peaks. (H) Spatial distribution of SUMO-1, H3K9me3 and H3K4me3 ChIP-seq signal on ERV annotations overlapping with a SUMO peak. (I) Expression of genes located within 30kb from MEF-and ESC-specific intragenic SUMO peaks, *p < 0.05. (J) Ontology analysis of genes located within 30kb from MEF-specific intragenic SUMO peaks. (K) Genome browser views of SUMO-1, SUMO-2 and histone marks at the Itga11 and Col5a1 loci in MEFs. (L) Genome browser views of SUMO-1, SUMO-2 and histone marks at the Nanog, Oct4, Klf4 and Sox2 loci in ESCs, Metaplots of histone mark signal intensities centered on MEF-and ESC-specific SUMO peaks in TSS, intragenic and intergenic regions. (E)