, Fast SYBR-Green master mix (BIORAD, #170-8880AP) was used for the analysis of gene expression using the BIORAD CFX RT-PCR system. The primers used in the experiment are listed the in Supplementary Table 2. 18S was used to normalize the relative gene expression and the 2 ???Ct method was used to measure the fold change. Western blotting. Protein extracts were isolated from heart tissue and cells using RIPA buffer (Thermofischer, #89900) supplemented with protease (Sigma Aldrich, #11836170001) and phosphatase inhibitors cocktails (ROCHE, #PHOSS-RO). Nuclear and cytoplasmic extracts were obtained using NE-PER kit (Pierce, #78833) according to the manufacturer's instructions. Co-immunoprecipitation was performed with the cell lysates subjected to different treatment conditions with Pierce Direct Magnetic IP/CO-IP kit (Pierce, #88828) according to the manufacturer's protocol. Immunoprecipitates were washed from conjugated beads and boiled in 5× SDS-PAGE buffer for further WB analysis, :5000) and anti-GAPDH (Abcam, #ab8245, 1:5000). Anti-Lamin A/C (Abcam, #ab8984, 1:5000) and anti-PARP (Abcam, #ab6079,1:5000) were used as nuclear controls. Blots were visualized by labeling with anti-Rabbit HRP (Bethyl Laboratories, #A120-101P, 1:5000 or Thermo Fisher # 101023, 1:1000) and anti-Mouse HRP, vol.3102

J. G. Travers, F. A. Kamal, J. Robbins, K. E. Yutzey, and B. C. Blaxall, Cardiac fibrosis: the fibroblast awakens, Circ. Res, vol.118, pp.1021-1040, 2016.

A. Gulati, Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy, JAMA, vol.309, pp.896-908, 2013.

A. C. Garfinkel, J. G. Seidman, and C. E. Seidman, Genetic pathogenesis of hypertrophic and dilated cardiomyopathy, Heart Fail. Clin, vol.14, pp.139-146, 2018.

P. A. Harvey and L. A. Leinwand, The cell biology of disease: cellular mechanisms of cardiomyopathy, J. Cell Biol, vol.194, pp.355-365, 2011.

M. Gyongyosi, Myocardial fibrosis: biomedical research from bench to bedside, Eur. J. Heart Fail, vol.19, pp.177-191, 2017.

S. Reddy, miR-21 is associated with fibrosis and right ventricular failure, JCI Insight, vol.2, p.91625, 2017.

D. C. Rockey, P. D. Bell, and J. A. Hill, Fibrosis-a common pathway to organ injury and failure, N. Engl. J. Med, vol.372, pp.1138-1149, 2015.

J. Baum and H. S. Duffy, Fibroblasts and myofibroblasts: what are we talking about?, J. Cardiovasc. Pharm, vol.57, pp.376-379, 2011.

S. Schafer, IL-11 is a crucial determinant of cardiovascular fibrosis, Nature, vol.552, pp.110-115, 2017.

A. Leask, Getting to the heart of the matter: new insights into cardiac fibrosis, Circ. Res, vol.116, pp.1269-1276, 2015.

Q. Wang, Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease, Fibrogenes Tissue Repair, vol.4, p.4, 2011.

B. Piersma, R. A. Bank, and M. Boersema, Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge, Front. Med, vol.2, p.59, 2015.

A. Leask, TGFbeta, cardiac fibroblasts, and the fibrotic response, Cardiovasc. Res, vol.74, pp.207-212, 2007.

S. Ross and C. S. Hill, How the Smads regulate transcription, Int. J. Biochem. Cell Biol, vol.40, pp.383-408, 2008.

Z. Fan and J. Guan, Antifibrotic therapies to control cardiac fibrosis, Biomater. Res, vol.20, p.13, 2016.

A. Leask, Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation, Circ. Res, vol.106, pp.1675-1680, 2010.

A. H. Gyorfi, A. E. Matei, and J. H. Distler, Targeting TGF-beta signaling for the treatment of fibrosis, Matrix Biol, pp.68-69, 2018.

A. Moreno-moral, F. Pesce, J. Behmoaras, and E. Petretto, Systems genetics as a tool to identify master genetic regulators in complex disease, Methods Mol. Biol, vol.1488, pp.337-362, 2017.

N. Hubner, Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease, Nat. Genet, vol.37, pp.243-253, 2005.

E. Petretto, Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass, Nat. Genet, vol.40, pp.546-552, 2008.

M. Mancini, Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat, Basic Res. Cardiol, vol.108, p.316, 2013.

S. R. Langley, Systems-level approaches reveal conservation of transregulated genes in the rat and genetic determinants of blood pressure in humans, Cardiovasc. Res, vol.97, pp.653-665, 2013.

M. Pravenec, Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension, Nat. Genet, vol.40, pp.952-954, 2008.

A. Moreno-moral, M. Mancini, G. D'amati, P. Camici, and E. Petretto, Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling, J. Cardiovasc. Transl. Res, vol.6, pp.931-944, 2013.

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl Acad. Sci. USA, vol.102, pp.15545-15550, 2005.

M. Heinig, Natural genetic variation of the cardiac transcriptome in nondiseased donors and patients with dilated cardiomyopathy, Genome Biol, vol.18, p.170, 2017.

M. Rotival and E. Petretto, Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits, Brief. Funct. Genomics, vol.13, pp.66-78, 2014.

T. Zhao, Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts, Am. J. Physiol. Heart Circ. Physiol, vol.304, pp.1719-1726, 2013.

N. Pradegan, Myocardial histopathology in late-repaired and unrepaired adults with tetralogy of Fallot, Cardiovasc. Pathol, vol.25, pp.225-231, 2016.

M. A. Burke, Molecular profiling of dilated cardiomyopathy that progresses to heart failure, JCI Insight, vol.1, p.86898, 2016.

J. Massague and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system, EMBO J, vol.19, pp.1745-1754, 2000.

A. Lachmann, ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments, Bioinformatics, vol.26, pp.2438-2444, 2010.

L. Bottolo, Bayesian detection of expression quantitative trait loci hot spots, Genetics, vol.189, pp.1449-1459, 2011.

M. Heinig, A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk, Nature, vol.467, pp.460-464, 2010.

M. R. Johnson, Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus, Nat. Commun, vol.6, p.6031, 2015.

H. Kang, Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease, Cell Rep, vol.8, pp.1210-1224, 2014.

S. Matsumura, Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice, J. Clin. Invest, vol.115, pp.599-609, 2005.

J. T. Peterson, H. Li, L. Dillon, and J. W. Bryant, Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat, Cardiovasc. Res, vol.46, pp.307-315, 2000.

J. A. Schwanekamp, TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury, PLoS ONE, vol.12, p.181945, 2017.

S. M. Soond and A. Chantry, Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFbeta signalling and EMT, Oncogene, vol.30, pp.2451-2462, 2011.

W. Zou, The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid, Nat. Cell Biol, vol.13, pp.59-65, 2011.

M. Schmidt, Controlling the balance of fibroblast proliferation and differentiation: impact of Thy-1, J. Invest. Dermatol, vol.135, pp.1893-1902, 2015.

A. A. Horwitz, E. L. Affar, G. F. Heine, Y. Shi, and J. D. Parvin, A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase, Proc. Natl Acad. Sci. USA, vol.104, pp.6614-6619, 2007.

F. Xie, Z. Zhang, H. Van-dam, L. Zhang, and F. Zhou, Regulation of TGF-beta superfamily signaling by SMAD mono-ubiquitination, Cells, vol.3, pp.981-993, 2014.

L. Y. Tang, Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3, EMBO J, vol.30, pp.4777-4789, 2011.

L. Xu and J. Massague, Nucleocytoplasmic shuttling of signal transducers, Nat. Rev. Mol. Cell Biol, vol.5, pp.209-219, 2004.

G. J. Inman, F. J. Nicolas, and C. S. Hill, Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity, Mol. Cell, vol.10, pp.283-294, 2002.

G. J. Inman, SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7, Mol. Pharm, vol.62, pp.65-74, 2002.

B. Schmierer and C. S. Hill, Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads, Mol. Cell Biol, vol.25, pp.9845-9858, 2005.

Y. Nakamura, Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25, Nat. Commun, vol.2, p.251, 2011.

Y. Yang, E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation, Proc. Natl Acad. Sci. USA, vol.110, pp.5115-5120, 2013.

S. Maddika, WWP2 is an E3 ubiquitin ligase for PTEN, Nat. Cell Biol, vol.13, pp.728-733, 2011.

C. Fukumoto, WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice, vol.1, pp.807-820, 2014.

S. K. Kim, Two genetic variants associated with plantar fascial disorders, Int J. Sports Med, vol.39, pp.314-321, 2018.

U. Styrkarsdottir, Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis, Nat. Genet, vol.50, pp.1681-1687, 2018.

H. Khalil, Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis, J. Clin. Invest, vol.127, pp.3770-3783, 2017.

K. Bernard, Metabolic reprogramming is required for myofibroblast contractility and differentiation, J. Biol. Chem, vol.290, pp.25427-25438, 2015.

B. Selvarajah, Metabolic shift during TGF-? induced collagen synthesis, QJM, vol.109, issue.S3, 2016.

S. Lovisa, Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis, Nat. Med, vol.21, pp.998-1009, 2015.

J. J. Santiago, Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts, Dev. Dyn, vol.239, pp.1573-1584, 2010.

R. S. Lo and J. Massague, Ubiquitin-dependent degradation of TGF-betaactivated smad2, Nat. Cell Biol, vol.1, pp.472-478, 1999.

C. S. Hill, Nucleocytoplasmic shuttling of Smad proteins, Cell Res, vol.19, pp.36-46, 2009.

J. D. Schnell and L. Hicke, Non-traditional functions of ubiquitin and ubiquitin-binding proteins, J. Biol. Chem, vol.278, pp.35857-35860, 2003.

L. C. Trotman, Ubiquitination regulates PTEN nuclear import and tumor suppression, Cell, vol.128, pp.141-156, 2007.

M. Inui, USP15 is a deubiquitylating enzyme for receptor-activated SMADs, Nat. Cell Biol, vol.13, pp.1368-1375, 2011.

L. Y. Tang and Y. E. Zhang, Non-degradative ubiquitination in Smaddependent TGF-beta signaling, Cell Biosci, vol.1, p.43, 2011.

C. L. Brooks, M. Li, and W. Gu, Mechanistic studies of MDM2-mediated ubiquitination in p53 regulation, J. Biol. Chem, vol.282, pp.22804-22815, 2007.

L. Jia and Y. Sun, SCF E3 ubiquitin ligases as anticancer targets, Curr. Cancer Drug Targets, vol.11, pp.347-356, 2011.

X. Huang and V. M. Dixit, Drugging the undruggables: exploring the ubiquitin system for drug development, Cell Res, vol.26, pp.484-498, 2016.

L. A. Carvajal, Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia, Sci. Transl. Med, vol.10, p.3003, 2018.

L. Ding, Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells, Oncol. Rep, vol.38, pp.933-940, 2017.

X. L. Huang, E3 ubiquitin ligase: a potential regulator in fibrosis and systemic sclerosis, Cell Immunol. 306, vol.307, pp.1-8, 2016.

A. M. Segura, O. H. Frazier, and L. M. Buja, Fibrosis and heart failure, Heart Fail. Rev, vol.19, pp.173-185, 2014.

A. J. Edgley, H. Krum, and D. J. Kelly, Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta, Cardiovasc. Ther, vol.30, pp.30-40, 2012.

C. Rintisch, Natural variation of histone modification and its impact on gene expression in the rat genome, Genome Res, vol.24, pp.942-953, 2014.

J. A. Martin and Z. Wang, Next-generation transcriptome assembly, Nat. Rev. Genet, vol.12, pp.671-682, 2011.

J. T. Leek and J. D. Storey, Capturing heterogeneity in gene expression studies by surrogate variable analysis, PLoS Genet, vol.3, pp.1724-1735, 2007.

B. Heidecker, The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences, Eur. Heart J, vol.31, pp.1188-1196, 2010.

J. Hardin, A. Mitani, L. Hicks, and B. Vankoten, A robust measure of correlation between two genes on a microarray, BMC Bioinformatics, vol.8, p.220, 2007.

Y. Choi and C. Kendziorski, Statistical methods for gene set co-expression analysis, Bioinformatics, vol.25, pp.2780-2786, 2009.