K. Hampson, L. Coudeville, T. Lembo, M. Sambo, A. Kieffer et al., Global Alliance for Rabies Control Partners for Rabies Prevention, PLoS Negl Trop Dis, vol.9, 2015.

D. L. Knobel, S. Cleaveland, P. G. Coleman, E. M. Fèvre, M. I. Meltzer et al., Re-evaluating the burden of rabies in Africa and Asia, Bull World Health Organ, vol.83, pp.360-368, 2005.

L. Pasteur, Methode pour prevenir la rage apres morsure, C.R Acad. Sci, 1885.

C. Leyrat, E. A. Ribeiro, F. C. Gérard, I. Ivanov, R. W. Ruigrok et al., Structure, interactions with host cell and functions of rhabdovirus phosphoprotein, Future Virol, vol.6, pp.465-481, 2011.

A. Albertini, R. Ruigrok, and D. Blondel, Rabies virus transcription and replication, Adv Virus Res, vol.79, pp.1-22, 2011.

C. Wirblich, G. S. Tan, A. Papaneri, P. J. Godlewski, J. M. Orenstein et al., PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity, J Virol, vol.82, pp.9730-9738, 2008.

S. Finke, R. Mueller-waldeck, and K. Conzelmann, Rabies virus matrix protein regulates the balance of virus transcription and replication, J Gen Virol, vol.84, pp.1613-1621, 2003.

T. Masatani, N. Ito, K. Shimizu, Y. Ito, K. Nakagawa et al., Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response, J Virol, vol.84, pp.4002-4012, 2010.

D. Tian, Z. Luo, M. Zhou, M. Li, L. Yu et al., Critical role of K1685 and K1829 in the large protein of rabies virus in viral pathogenicity and immune evasion, J Virol, vol.90, pp.232-244, 2016.

C. Préhaud, N. Wolff, E. Terrien, M. Lafage, F. Mégret et al., Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein, Sci Signal, vol.3, p.5, 2010.

R. Kassis, F. Larrous, J. Estaquier, and H. Bourhy, Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation, J Virol, vol.78, pp.6543-6555, 2004.

A. Gholami, R. Kassis, E. Real, O. Delmas, S. Guadagnini et al., Mitochondrial dysfunction in lyssavirus-induced apoptosis, J Virol, vol.82, pp.4774-4784, 2008.

K. Brzózka, S. Finke, and K. Conzelmann, Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3, J Virol, vol.79, pp.7673-7681, 2005.

S. Luco, O. Delmas, P. Vidalain, F. Tangy, R. Weil et al., RelAp43, a member of the NF-B family involved in innate immune response against Lyssavirus infection, PLoS Pathog, vol.8, 2012.

. Besson,

Y. Ben-khalifa, S. Luco, B. Besson, F. Sonthonnax, M. Archambaud et al., The matrix protein of rabies virus binds to RelAp43 to modulate NF-B-dependent gene expression related to innate immunity, Sci Rep, vol.6, p.39420, 2016.

L. Wiltzer, K. Okada, S. Yamaoka, F. Larrous, H. V. Kuusisto et al., Interaction of rabies virus P-protein with STAT proteins is critical to lethal rabies disease, J Infect Dis, vol.209, pp.1744-1753, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01479389

A. Vidy, M. Chelbi-alix, and D. Blondel, Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways, J Virol, vol.79, pp.14411-14420, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02827584

T. Masatani, M. Ozawa, K. Yamada, N. Ito, M. Horie et al., Contribution of the interaction between the rabies virus P protein and I-kappa B kinase ? to the inhibition of type I IFN induction signalling, J Gen Virol, vol.97, pp.316-326, 2016.

B. Besson, F. Sonthonnax, M. Duchateau, B. Khalifa, Y. Larrous et al., Regulation of NF-B by the p105-ABIN2-TPL2 complex and RelAp43 during rabies virus infection, PLoS Pathog, vol.13, 2017.

M. Prosniak, D. C. Hooper, B. Dietzschold, and H. Koprowski, Effect of rabies virus infection on gene expression in mouse brain, Proc Natl Acad Sci U S A, vol.98, pp.2758-2763, 2001.

Z. W. Wang, L. Sarmento, Y. Wang, X. Li, V. Dhingra et al., Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system, J Virol, vol.79, pp.12554-12565, 2005.

C. Préhaud, F. Mégret, M. Lafage, and M. Lafon, Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon, J Virol, vol.79, pp.12893-12904, 2005.

S. Ubol, J. Kasisith, C. Mitmoonpitak, and D. Pitidhamabhorn, Screening of upregulated genes in suckling mouse central nervous system during the disease stage of rabies virus infection, Microbiol Immunol, vol.50, pp.951-959, 2006.

V. Dhingra, X. Li, Y. Liu, and Z. F. Fu, Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system, J Neurovirol, vol.13, pp.107-117, 2007.

F. Zandi, N. Eslami, M. Soheili, A. Fayaz, A. Gholami et al., Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus, Proteomics, vol.9, pp.2399-2407, 2009.

S. Kluge, S. Rourou, D. Vester, S. Majoul, D. Benndorf et al., Proteome analysis of virus-host cell interaction: rabies virus replication in Vero cells in two different media, Appl Microbiol Biotechnol, vol.97, pp.5493-5506, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01023727

B. Fouquet, J. Nikolic, F. Larrous, H. Bourhy, C. Wirblich et al., Focal adhesion kinase is involved in rabies virus infection through its interaction with viral phosphoprotein P, J Virol, vol.89, pp.1640-1651, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01430019

U. F. Lingappa, X. Wu, A. Macieik, S. F. Yu, A. Atuegbu et al., Rupprecht CE. 2013. Host-rabies virus protein-protein interactions as druggable antiviral targets, Proc Natl Acad Sci U S A, vol.110, pp.861-868

D. Wallis, K. Loesch, S. Galaviz, Q. Sun, M. Dejesus et al., High-throughput differentiation and screening of a library of mutant stem cell clones defines new host-based genes involved in rabies virus infection, Stem Cells, vol.33, pp.2509-2522, 2015.

D. Panda, A. Das, P. X. Dinh, S. Subramaniam, D. Nayak et al., RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses, Proc Natl Acad Sci U S A, vol.108, pp.19036-19041, 2011.

A. Lee, R. Burdeinick-kerr, and S. Whelan, A genome-wide small interfering rna screen identifies host factors required for vesicular stomatitis virus infection, J Virol, vol.88, pp.642-656, 2014.

S. Oksayan, J. Nikolic, C. T. David, D. Blondel, D. A. Jans et al., Identification of a role for nucleolin in rabies virus infection, J Virol, vol.89, pp.1939-1943, 2015.

E. Buehler, Y. Chen, and S. Martin, C911: a bench-level control for sequence specific siRNA off-target effects, PLoS One, vol.7, 2012.

C. L. Nguyen, R. Possemato, E. L. Bauerlein, A. Xie, R. Scully et al., Nek4 regulates entry into replicative senescence and the response to DNA damage in human fibroblasts, Mol Cell Biol, vol.32, pp.3963-3977, 2012.

J. A. Ubersax, J. E. Ferrell, and J. , Mechanisms of specificity in protein phosphorylation, Nat Rev Mol Cell Biol, vol.8, pp.530-541, 2007.

R. Zhang, C. Liu, Y. Cao, M. Jamal, X. Chen et al., Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication, Oncotarget, vol.8, pp.43822-43837, 2017.

J. Zhang, C. Ye, X. Ruan, J. Zan, Y. Xu et al., The chaperonin CCT? is required for efficient transcription and replication of rabies virus, Microbiol Immunol, vol.58, pp.590-599, 2014.

Y. Klingen, K. Conzelmann, and S. Finke, Double-labeled rabies virus: live tracking of enveloped virus transport, J Virol, vol.82, pp.237-245, 2008.

S. Ohtsuki, Y. Takahashi, T. Inoue, Y. Takakura, and M. Nishikawa, Reconstruction of Toll-like receptor 9-mediated responses in HEK-Blue hTLR9 cells by transfection of human macrophage scavenger receptor 1 gene, 2017.

L. Nobre, D. Wise, R. D. Volmer, and R. , Modulation of innate immune signalling by lipid-mediated MAVS transmembrane domain oligomerization, PLoS One, vol.10, p.136883, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02632377

C. Lässig, S. Matheisl, K. M. Sparrer, C. C. De-oliveira-mann, M. Moldt et al., Correction: ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA, 2016.

L. Zhang, Q. Xin, S. Zhu, W. Wan, W. Wang et al., Activation of the RLR/MAVS signaling pathway by the L protein of Mopeia virus, J Virol, vol.90, pp.10259-10270, 2016.

G. Xiao, A. Fong, and S. C. Sun, Induction of p100 processing by NF-Binducing kinase involves docking I B kinase (IKK) to p100 and IKKmediated phosphorylation, J Biol Chem, vol.279, pp.30099-30105, 2004.

L. A. Winston and T. Hunter, Intracellular signalling: putting JAKs on the kinase MAP, Curr Biol, vol.6, issue.09, p.445, 1996.

S. Yang, A. D. Sharrocks, and A. J. Whitmarsh, MAP kinase signalling cascades and transcriptional regulation, Gene, vol.513, pp.1-13, 2013.

K. Nakamichi, M. Saiki, M. Sawada, M. Takayama-ito, Y. Yamamuro et al., Rabies virus-induced activation of mitogenactivated protein kinase and NF-kappaB signaling pathways regulates expression of CXC and CC chemokine ligands in microglia, J Virol, vol.79, pp.11801-11812, 2005.

K. Nakamichi, S. Inoue, T. Takasaki, K. Morimoto, and I. Kurane, Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signalregulated kinases 1 and 2, J Virol, vol.78, pp.9376-9388, 2004.

D. Poccia and B. Larijani, Phosphatidylinositol metabolism and membrane fusion, Biochem J, vol.418, pp.233-246, 2009.

B. Vanhaesebroeck, L. Stephens, and P. Hawkins, PI3K signalling: the path to discovery and understanding, Nat Rev Mol Cell Biol, vol.13, pp.195-203, 2012.

Á. Vázquez-calvo, F. Sobrino, and M. A. Martín-acebes, Plasma membrane phosphatidylinositol 4,5 bisphosphate is required for internalization of foot-and-mouth disease virus and vesicular stomatitis virus, PLoS One, vol.7, 2012.

K. A. Johnson, G. Taghon, J. L. Scott, and R. V. Stahelin, The Ebola virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for extensive oligomerization at the plasma membrane and viral egress, Sci Rep, vol.6, 2016.

Y. K. Shin, Q. Liu, S. K. Tikoo, L. A. Babiuk, and Y. Zhou, Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation, J Gen Virol, vol.88, pp.942-950, 2007.

M. F. Saeed, A. A. Kolokoltsov, A. N. Freiberg, M. R. Holbrook, and R. A. Davey, Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus, PLoS Pathog, vol.4, p.1000141, 2008.

N. Yang, P. Ma, J. Lang, Y. Zhang, J. Deng et al., Phosphatidylinositol 4-kinase III? is required for severe acute respiratory syndrome coronavirus spike-mediated cell entry, J Biol Chem, vol.287, pp.8457-8467, 2012.

K. Ishikawa-sasaki, J. Sasaki, and K. Taniguchi, A complex comprising phosphatidylinositol 4-kinase III?, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex, J Virol, vol.88, pp.6586-6598, 2014.

J. A. Mcphail, E. H. Ottosen, M. L. Jenkins, and J. E. Burke, The molecular basis of Aichi virus 3A protein activation of phosphatidylinositol 4 kinase III?, PI4KB, through ACBD3, Structure, vol.25, pp.121-131, 2017.

A. K. Gupta, D. Blondel, S. Choudhary, and A. K. Banerjee, The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C, J Virol, vol.74, pp.91-98, 2000.

D. Panda and S. Cherry, Cell-based genomic screening: elucidating virus-host interactions, Curr Opin Virol, vol.2, pp.784-792, 2012.

T. J. Heikkilä, L. Ylä-outinen, J. Tanskanen, R. S. Lappalainen, H. Skottman et al., Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro, Exp Neurol, vol.218, pp.109-116, 2009.

U. J. Buchholz, S. Finke, and K. K. Conzelmann, Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter, J Virol, vol.73, pp.251-259, 1999.

B. Bhinder and H. Djaballah, A simple method for analyzing actives in random RNAi screens: introducing the "H Score" for hit nomination & gene prioritization, Comb Chem High Throughput Screen, vol.15, pp.686-704, 2012.

M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res, vol.44, pp.457-62, 2016.

M. Kanehisa and S. Goto, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, pp.353-361, 2017.