M. D. Audsley and G. W. Moseley, Paramyxovirus evasion of innate immunity: Diverse strategies for common targets, World J. Virol, vol.2, pp.57-70, 2013.

P. Cassonnet, C. Rolloy, G. Neveu, P. O. Vidalain, T. Chantier et al., , 2011.

M. Chenik, K. Chebli, Y. Gaudin, and D. Blondel, In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N): existence of two N-binding sites on P protein, J. Gen. Virol, vol.75, pp.2889-2896, 1994.

H. Cheon, E. G. Holvey-bates, J. W. Schoggins, S. Forster, P. Hertzog et al., , 2013.

, IFNb-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage, EMBO J, vol.32, pp.2751-2763

M. J. Ciancanelli, V. A. Volchkova, M. L. Shaw, V. E. Volchkov, and C. F. Basler, Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism, J. Virol, vol.83, pp.7828-7841, 2009.

F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J. Biomol. NMR, vol.6, pp.277-293, 1995.

P. Devaux, A. W. Hudacek, G. Hodge, . Reyes-del, J. Valle et al., A recombinant measles virus unable to antagonize STAT1 function cannot control inflammation and is attenuated in rhesus monkeys, J. Virol, vol.85, pp.348-356, 2011.

V. Fensterl and G. C. Sen, Interferons and viral infections, Biofactors, vol.35, pp.14-20, 2009.

Z. F. Fu, Y. Zheng, W. H. Wunner, H. Koprowski, and B. Dietzschold, Both the N-and the C-terminal domains of the nominal phosphoprotein of rabies virus are involved in binding to the nucleoprotein, Virology, vol.200, pp.590-597, 1994.

A. Ghanem, A. Kern, and K. K. Conzelmann, Significantly improved rescue of rabies virus from cDNA plasmids, Eur. J. Cell Biol, vol.91, pp.10-16, 2012.

J. R. Huth, C. A. Bewley, B. M. Jackson, A. G. Hinnebusch, G. M. Clore et al., Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR, Protein Sci, vol.6, pp.2359-2364, 1997.

S. G. Hyberts, K. Takeuchi, and G. Wagner, Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data, J. Am. Chem. Soc, vol.132, pp.2145-2147, 2010.

A. Impagliazzo and M. Ubbink, Mapping of the binding site on pseudoazurin in the transient 152 kDa complex with nitrite reductase, J. Am. Chem. Soc, vol.126, pp.5658-5659, 2004.

N. Ito, G. W. Moseley, D. Blondel, K. Shimizu, C. L. Rowe et al., Role of interferon antagonist activity of rabies virus phosphoprotein in viral pathogenicity, 2010.

, J. Virol, vol.84, pp.6699-6710

N. Ito, G. W. Moseley, and M. Sugiyama, The importance of immune evasion in the pathogenesis of rabies virus, J. Vet. Med. Sci, vol.78, pp.1089-1098, 2016.

Y. Jacob, E. Real, and N. Tordo, Functional interaction map of lyssavirus phosphoprotein: identification of the minimal transcription domains, 2001.

, J. Virol, vol.75, pp.9613-9622

K. Jenkins, J. J. Khoo, A. Sadler, R. Piganis, D. Wang et al., Mitochondrially localised MUL1 is a novel modulator of antiviral signaling, Immunol. Cell Biol, vol.91, pp.321-330, 2013.

K. Kazimierczuk and V. Y. Orekhov, Accelerated NMR spectroscopy by using compressed sensing, Angew. Chem. Int. Ed. Engl, vol.50, pp.5556-5559, 2011.

W. Lee, M. Tonelli, and J. L. Markley, NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy, Bioinformatics, vol.31, pp.1325-1327, 2015.

C. P. Lim and X. Cao, Structure, function, and regulation of STAT proteins, Mol. Biosyst, vol.2, pp.536-550, 2006.

R. Lin, P. Gé-nin, Y. Mamane, and J. Hiscott, Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7, Mol. Cell. Biol, vol.20, pp.6342-6353, 2000.

M. Lucas-hourani, D. Dauzonne, P. Jorda, G. Cousin, A. Lupan et al., Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity, PLoS Pathog, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01113535

S. Luco, O. Delmas, P. O. Vidalain, F. Tangy, R. Weil et al., , 2012.

, RelAp43, a member of the NF-kB family involved in innate immune response against Lyssavirus infection, PLoS Pathog, vol.8, p.1003060

X. Mao, Z. Ren, G. N. Parker, H. Sondermann, M. A. Pastorello et al., Structural bases of unphosphorylated STAT1 association and receptor binding, Mol. Cell, vol.17, pp.761-771, 2005.

J. A. Marsh, V. K. Singh, Z. Jia, and J. D. Forman-kay, Sensitivity of secondary structure propensities to sequence differences between alphaand gamma-synuclein: implications for fibrillation, Protein Sci, vol.15, pp.2795-2804, 2006.

S. R. Martin and M. J. Schilstra, Circular dichroism and its application to the study of biomolecules, Methods Cell Biol, vol.84, pp.263-293, 2008.

T. Masatani, M. Ozawa, K. Yamada, N. Ito, M. Horie et al., Contribution of the interaction between the rabies virus P protein and I-kappa B kinase E to the inhibition of type I IFN induction signalling, J. Gen. Virol, vol.97, pp.316-326, 2016.

M. Mavrakis, A. A. Mccarthy, S. Roche, D. Blondel, and R. W. Ruigrok, Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus, J. Mol. Biol, vol.343, pp.819-831, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02670801

G. W. Moseley, X. Lahaye, D. M. Roth, S. Oksayan, R. P. Filmer et al., Dual modes of rabies P-protein association with microtubules: a novel strategy to suppress the antiviral response, J. Cell Sci, vol.122, pp.3652-3662, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02662384

T. Nakanishi, M. Miyazawa, M. Sakakura, H. Terasawa, H. Takahashi et al., Determination of the interface of a large protein complex by transferred cross-saturation measurements, J. Mol. Biol, vol.318, pp.245-249, 2002.

Y. Nan, C. Wu, and Y. J. Zhang, Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism, Front. Immunol, vol.8, p.1758, 2017.

N. Nishida, H. Sumikawa, M. Sakakura, N. Shimba, H. Takahashi et al., Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment, Nat. Struct. Biol, vol.10, pp.53-58, 2003.

K. Oda, Y. Matoba, T. Irie, R. Kawabata, M. Fukushi et al., Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C, Protein. J. Virol, vol.89, pp.11487-11499, 2015.

S. Oksayan, J. Nikolic, C. T. David, D. Blondel, D. A. Jans et al., Identification of a role for nucleolin in rabies virus infection, 2015.

, J. Virol, vol.89, pp.1939-1943

R. E. Randall and S. Goodbourn, Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures, 2008.

, J. Gen. Virol, vol.89, pp.1-47

A. Ribeiro-ede, . Jr, C. Leyrat, F. C. Gé-rard, A. A. Albertini et al., Binding of rabies virus polymerase cofactor to recombinant circular nucleoprotein-RNA complexes, J. Mol. Biol, vol.394, pp.558-575, 2009.

M. Rieder, K. Brzó-zka, C. K. Pfaller, J. H. Cox, L. Stitz et al.,

, Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity, J. Virol, vol.85, pp.842-852

A. Rö-thlisberger, D. Wiener, M. Schweizer, E. Peterhans, A. Zurbriggen et al., Two domains of the V protein of virulent canine distemper virus selectively inhibit STAT1 and STAT2 nuclear import, J. Virol, vol.84, pp.6328-6343, 2010.

C. L. Rowe, K. M. Wagstaff, S. Oksayan, D. J. Glover, D. A. Jans et al., Nuclear trafficking of the rabies virus interferon antagonist Pprotein is regulated by an importin-binding nuclear localization sequence in the C-terminal domain, PLoS ONE, vol.11, 2016.

C. E. Rupprecht, A. R. Fooks, and B. Abela-ridder, Laboratory Techniques in Rabies, vol.2, 2019.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

G. Schoehn, F. Iseni, M. Mavrakis, D. Blondel, and R. W. Ruigrok, Structure of recombinant rabies virus nucleoprotein-RNA complex and identification of the phosphoprotein binding site, J. Virol, vol.75, pp.490-498, 2001.

P. Schuck, On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation, Anal. Biochem, vol.320, pp.104-124, 2003.

D. J. Scott, N. J. Gunn, K. J. Yong, V. C. Wimmer, N. A. Veldhuis et al., A novel ultra-stable, monomeric green fluorescent protein for direct volumetric imaging of whole organs using, CLARITY. Sci. Rep, vol.8, p.667, 2018.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, 2011.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif, vol.7, pp.207-234, 2005.

H. Takahashi, T. Nakanishi, K. Kami, Y. Arata, and I. Shimada, A novel NMR method for determining the interfaces of large protein-protein complexes, Nat. Struct. Biol, vol.7, pp.220-223, 2000.

P. Thongcharoen, P. Sureau, C. Wasi, H. Bourhy, P. Chaiprasithikul et al., Monoclonal antibody studies of rabies viruses isolated from Thailand, Southeast Asian J. Trop. Med. Public Health, vol.21, pp.129-133, 1990.

G. A. Versteeg and A. García-sastre, Viral tricks to grid-lock the type I interferon system, Curr. Opin. Microbiol, vol.13, pp.508-516, 2010.

A. Vidy, M. Chelbi-alix, and D. Blondel, Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02827584

, J. Virol, vol.79, pp.14411-14420

A. Vidy, J. El-bougrini, M. K. Chelbi-alix, and D. Blondel, The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1, J. Virol, vol.81, pp.4255-4263, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00170762

S. R. Walker, M. Chaudhury, E. A. Nelson, and D. A. Frank, Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) signaling, Mol. Pharmacol, vol.78, pp.903-908, 2010.

N. Wenta, H. Strauss, S. Meyer, and U. Vinkemeier, Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations, Proc. Natl. Acad. Sci. U S A, vol.105, pp.9238-9243, 2008.

L. Whitmore and B. A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res, vol.32, pp.668-673, 2004.

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases, Biopolymers, vol.89, pp.392-400, 2008.

L. Wiltzer, F. Larrous, S. Oksayan, N. Ito, G. A. Marsh et al., Conservation of a unique mechanism of immune evasion across the Lyssavirus genus, J. Virol, vol.86, pp.10194-10199, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01481638

L. Wiltzer, K. Okada, S. Yamaoka, F. Larrous, H. V. Kuusisto et al., Interaction of rabies virus P-protein with STAT proteins is critical to lethal rabies disease, J. Infect. Dis, vol.209, pp.1744-1753, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01479389

W. Xu, M. R. Edwards, D. M. Borek, A. R. Feagins, A. Mittal et al., Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1, Cell Host Microbe, vol.16, pp.187-200, 2014.

J. Yang and G. R. Stark, Roles of unphosphorylated STATs in signaling, Cell Res, vol.18, pp.443-451, 2008.

J. Zhan, M. A. Hossain, A. Sethi, T. Ose, G. W. Moseley et al., 1 H, 15 N and 13 C resonance assignments of the C-terminal domain of the P protein of the Nishigahara strain of rabies virus, Biomol. NMR Assign, vol.13, pp.5-8, 2019.

A. P. Zhang, Z. A. Bornholdt, T. Liu, D. M. Abelson, D. E. Lee et al., The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold, PLoS Pathog, vol.8, p.1002550, 2012.

P. Zhou and G. Wagner, Overcoming the solubility limit with solubilityenhancement tags: successful applications in biomolecular NMR studies, 2010.

, J. Biomol. NMR, vol.46, pp.23-31

. Audsley, ) and solution B for Renilla luminescence (25 mM Na 4 PPi, 10 mM NaAc, 15 mM EDTA, 500 mM Na 2 SO 4 , 500 mM NaCl, 50 mM 4-(6-Methyl-1,3-benzothiazol-2-yl)aniline, 4 mM benzyl-coelenterazine, pH 5.0). For assays of IFN signaling, cells were treated 7 h post-transfection with 1000 U/mL IFNa (PBL Interferon Source) for 16 h before analysis by dual luciferase assay, HEK293-T cells cultured in wells of a 24-well plate were co-transfected with pEGFP-C1 constructs encoding GFP-fused WT or mutant P-protein, pRL-TK (Promega) (which constitutively expresses Renilla luciferase) and either pISRE-Luc (Stratagene, for type I IFN signaling assays) or pGL3-IFNb (kindly provided by Rongtuan Lin, vol.29, 1934.

. Wiltzer, Cells were infected at a multiplicity of infection (MOI) of 1 FFU/cell, or mock infected, then treated 24 h later without or with 1000 U/mL IFNa, before analysis using the Firefly Luciferase kit (Promega, France) after 24 h incubation. Confocal laser scanning microscopy (CLSM) COS-7 cells growing on coverslips were transfected with pEGFP-C1 plasmids expressing WT or mutant P-protein using Lipofectamine 3000 (ThermoFisher) according to the manufacturer's instructions. Cells were treated 16 h post-transfection without or with IFNa (1000 U/mL, 30 min) before fixation (3.7% formaldehyde, 10 min) and permeabilization (90% methanol, 5 min). Cells were immunostained with rabbit anti-STAT1 (CST, Cat# 14994; 1:1000 overnight 4 C) followed by Alexa Fluor-568 conjugated goat anti-rabbit secondary antibody (ThermoFisher, Cat #A-11011; 1:1000 90 min RT). Coverslips mounted onto glass slides using Mowiol were imaged using a Leica SP5 microscope, 12-well dishes were transfected with 0.4 mg pRVDI-luc, 0.6 mg pC-RN, 0.2 mg pC-RL, 0.025 mg pRL-TK, and 0.1 mg pEGFP-C1 encoding GFP-fused WT or mutant P-protein, using Lipofectamine, p.293, 2000.

. Brunel, 2014) chimeric constructs, and 5 ng of pGL4.50 (Promega), which constitutively expresses firefly luciferase. Cells were treated without or with IFNa (1000 U/mL) 24 h post-transfection and Gaussia and firefly luciferase activities measured after a further 24 h using the Renilla and Firefly Luciferase Assay Systems (Promega), respectively. Gaussia-luciferase activity was normalized to firefly luciferase activity. Protein-protein interaction levels are expressed as normalized luminescence ratios (NLRs), according to the following formula, Protein Complementation Assay HEK293-T cells seeded into 96-well plates were transfected 18 h later with 100 ng of Glu1 and Glu2, 2011.

, where Glu1A and Glu2B are chimeric proteins, and Glu1 and Glu2 empty vectors

, Co-immunoprecipitation and immunoblotting For co-immunoprecipitation (co-IP) assays, COS-7 cells seeded into 6-well trays were transfected to express GFP-fused P-proteins prior to treatment without or with 1000 U/mL IFNa 16 h post-transfection. At different time points post-treatment, cells were washed twice with PBS and harvested into 200 mL of cell lysis buffer (10 mM Tris-HCl

. Walker, 2010) using OneTaq DNA Polymerase (NEB, catalog # M0482S). PCR was purified using Wizardâ SV Gel and PCR Clean-up system. For gel shift experiments, 200 ng of DNA were incubated in 15 mL of 50 mM Na 2 HPO 4 , 100 mM NaCl, and 2 mM DTT, pH 7.4 for 1 h at room temperature with recombinant protein (pY-STAT1, WT or mutant P-CTD, or pY-STAT1 pre-incubated with WT or mutant P-CTD at room temperature for 20 min). 3 mL of DNA loading dye (0.25% Orange-G and 50% glycerol in milli-Q water) was then added to each sample prior to electrophoresis on a 1.2% agarose gel. 2-log DNA ladder (NEB) was used to indicate the size of the bands. Gels were run in 1x TAE buffer (40 mM Tris, 1 mM EDTA, 20 mM glacial acetic acid) and 0.5x SYBR-safe, Lysate was passed through a 27G needle 10 times, and incubated on ice (30 min) before centrifugation (12000 g, 10 min, 4 C). 10% of cleared lysate ('input' sample) was solubilised in SDS-PAGE loading buffer and the remainder subjected to co-IP using the GFP-Trap-MAG system (Chromotek) according to manufacturer's instructions, before elution using SDS-PAGE loading buffer. Input and co-IP samples were separated by SDS-PAGE before western blotting and analysis using mouse anti-pY-STAT1 (CST, cat. #9176), rabbit anti-STAT1 (CST, cat. #14994), and rabbit anti-GFP (Abcam, cat. #ab6556), vol.29, 1934.