, Papers of particular interest, published within the period of review, have been highlighted as: of special interest of outstanding interest

D. Carlo, S. E. Peduto, and L. , The perivascular origin of pathological fibroblasts, J Clin Invest, vol.128, pp.54-63, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01708378

, Current evidence by lineage tracing that perivascular mesenchymal cells are a major source of collagen-producing fibroblasts following injury

A. Holm, T. Heumann, and H. G. Augustin, Microvascular mural cell organotypic heterogeneity and functional plasticity, Trends Cell Biol, vol.28, pp.302-316, 2018.

M. Crisan, Perivascular multipotent progenitor cells in human organs, Ann N Y Acad Sci, vol.1176, pp.118-123, 2009.

M. Crisan, A perivascular origin for mesenchymal stem cells in multiple human organs, Cell Stem Cell, vol.3, pp.301-313, 2008.

M. Corselli, The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells, Stem Cells Dev, vol.21, pp.1299-1308, 2012.

M. Crisan, M. Corselli, W. C. Chen, and B. Peault, Perivascular cells for regenerative medicine, J Cell Mol Med, vol.16, pp.2851-2860, 2012.

B. Sacchetti, No identical "mesenchymal stem cells" at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels, Stem Cell Rep, vol.6, pp.897-913, 2016.

P. Bianco, The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine, Nat Med, vol.19, pp.35-42, 2013.

C. W. Chen, Human pericytes for ischemic heart repair, Stem Cells, vol.31, pp.305-316, 2013.

M. Hayes, G. Curley, and J. G. Laffey, Mesenchymal stem cells -a promising therapy for Acute Respiratory Distress Syndrome, F1000 Med Rep, vol.2012

A. Cras, Update on mesenchymal stem cell-based therapy in lupus and scleroderma, Arthritis Res Ther, vol.17, p.301, 2015.

A. Armulik, G. Genove, and C. Betsholtz, Pericytes: developmental, physiological, and pathological perspectives, problems, and promises, Dev Cell, vol.21, pp.193-215, 2011.

K. R. Stenmark, The adventitia: essential regulator of vascular wall structure and function, Annu Rev Physiol, vol.75, pp.23-47, 2013.

A. Armulik, Pericytes regulate the blood-brain barrier, Nature, vol.468, pp.557-561, 2010.

R. Daneman, L. Zhou, A. A. Kebede, and B. A. Barres, Pericytes are required for blood-brain barrier integrity during embryogenesis, Nature, vol.468, pp.562-566, 2010.

C. N. Hall, Capillary pericytes regulate cerebral blood flow in health and disease, Nature, vol.508, pp.55-60, 2014.

E. A. Winkler, R. D. Bell, and B. V. Zlokovic, Central nervous system pericytes in health and disease, Nat Neurosci, vol.14, pp.1398-1405, 2011.

P. Carmeliet and R. K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nat Rev Drug Discov, vol.10, pp.417-427, 2011.

K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, Getting to the site of inflammation: the leukocyte adhesion cascade updated, Nat Rev Immunol, vol.7, pp.678-689, 2007.

D. Proebstl, Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo, J Exp Med, vol.209, pp.1219-1234, 2012.

S. Wang, Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils, J Exp Med, vol.203, pp.1519-1532, 2006.

T. Girbl, Distinct compartmentalizati on of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis, Immunity, vol.49, pp.1062-1076, 2018.

, Show the distinct action of CXCL1 and CXCL2 in neutrophils migration through the vessel wall

K. Stark, Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and' instruct' them with pattern-recognition and motility programs, Nat Immunol, vol.14, pp.41-51, 2013.

C. F. Hung, Lung pericyte-like cells are functional interstitial immune sentinel cells, Am J Physiol Lung Cell Mol Physiol, vol.312, pp.556-567, 2017.

I. A. Leaf, Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury, J Clin Invest, vol.127, pp.321-334, 2017.

, Show that MyD88 is essential for pericyte control of inflammation in the kidney

R. Liu, IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium, J Immunol, vol.197, pp.2400-2408, 2016.

H. M. Lauridsen, Tumor necrosis factor-alpha and IL-17A activation induces pericyte-mediated basement membrane remodeling in human neutrophilic dermatoses, Am J Pathol, vol.187, pp.1893-1906, 2017.

K. C. El-kasmi, Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension, J Immunol, vol.193, pp.597-609, 2014.

H. Zhang, Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/pyruvate kinase muscle axis, vol.136, pp.2468-2485, 2017.

J. Dutzmann, Sonic hedgehog-dependent activation of adventitial fibroblasts promotes neointima formation, Cardiovasc Res, vol.113, pp.1653-1663, 2017.

X. D. Li, Adventitial fibroblast-derived VEGF promotes vasa vasorum-associated neointima formation and macrophage recruitment, Cardiovasc Res, vol.116, pp.708-720, 2019.

W. Gu, Adventitial cell atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-deficient mice defined by single-cell RNA sequencing, Arterioscler Thromb Vasc Biol, vol.39, pp.1055-1071, 2019.

E. Dalmas, Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production, Immunity, vol.47, pp.928-942, 2017.

W. Kuswanto, Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells, Immunity, vol.44, pp.355-367, 2016.

A. C. Kohlgruber, T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis, Nat Immunol, vol.19, pp.464-474, 2018.

J. Kinchen, Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease, Cell, vol.175, pp.372-386, 2018.

, Identify several mesenchymal clusters in the colon and their response to inflammation

S. N. Mueller and R. N. Germain, Stromal cell contributions to the homeostasis and functionality of the immune system, Nat Rev Immunol, vol.9, pp.618-629, 2009.

F. Aloisi and R. Pujol-borrell, Lymphoid neogenesis in chronic inflammatory diseases, Nat Rev Immunol, vol.6, pp.205-217, 2006.

L. B. Rodda, Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity, Immunity, vol.48, pp.1-15, 2018.

, Single-cells RNA sequencing provides evidence that the mesenchymal network of the LN is highly heterogeneous

H. W. Cheng, Origin and differentiation trajectories of fibroblastic reticular cells in the splenic white pulp, Nat Commun, vol.10, p.1739, 2019.

, Single-cells RNA sequencing and lineage tracing approaches provide evidence of the heterogeneity of the splenic mesenchyme and their role in development

N. J. Krautler, Follicular dendritic cells emerge from ubiquitous perivascular precursors, Cell, vol.150, pp.194-206, 2012.

C. Benezech, Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells, Immunity, vol.37, pp.721-734, 2012.

A. E. Denton, E. J. Carr, L. P. Magiera, A. Watts, and D. T. Fearon, Embryonic FAP(+) lymphoid tissue organizer cells generate the reticular network of adult lymph nodes, J Exp Med, vol.216, pp.2242-2252, 2019.

L. Castagnaro, Nkx2-5(+)islet1(+) mesenchymal precursors generate distinct spleen stromal cell subsets and participate in restoring stromal network integrity, Immunity, vol.38, pp.782-791, 2013.

K. Schaeuble, Perivascular fibroblasts of the developing spleen act as LTalpha1beta2-dependent precursors of both T and B zone organizer cells, Cell Rep, vol.21, pp.2500-2514, 2017.

C. D. Buckley, F. Barone, S. Nayar, C. Benezech, and J. Caamano, Stromal cells in chronic inflammation and tertiary lymphoid organ formation, Annu Rev Immunol, vol.33, pp.715-745, 2015.

B. D. Humphreys, Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis, Am J Pathol, vol.176, pp.85-97, 2010.

R. Kramann, Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis, Cell Stem Cell, vol.16, pp.51-66, 2015.

R. K. Schneider, Gli1(+) mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target, Cell Stem Cell, vol.20, pp.785-800, 2017.

S. Dulauroy, D. Carlo, S. E. Langa, F. Eberl, G. Peduto et al., Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury, Nat Med, vol.18, pp.1262-1270, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01402722

C. Goritz, A pericyte origin of spinal cord scar tissue, Science, vol.333, pp.238-242, 2011.

J. R. Rock, Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition, Proc Natl Acad Sci U S A, vol.108, pp.1475-1483, 2011.

I. Mederacke, Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology, Nat Commun, vol.4, p.2823, 2013.

L. A. Borthwick, T. A. Wynn, and A. J. Fisher, Cytokine mediated tissue fibrosis, Biochim Biophys Acta, vol.1832, pp.1049-1060, 2013.

C. M. Minutti, A macrophage-pericyte axis directs tissue restoration via amphiregulin-induced transforming growth factor beta activation, Immunity, vol.50, pp.645-654, 2019.

D. O. Dias, Show that limiting scarring derived from Glast + pericytes is sufficient to facilitate motor axon regeneration, Cell, vol.173, pp.153-165, 2018.

X. Wang, Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science, p.361, 2018.

N. Crosetto, M. Bienko, and A. Van-oudenaarden, Spatially resolved transcriptomics and beyond, vol.16, pp.57-66, 2015.