F. Dromer, S. Mathoulin-pélissier, O. Launay, O. Lortholary, . Group et al., Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study, PLOS Med, vol.4, p.21, 2007.

B. J. Park, K. A. Wannemuehler, B. J. Marston, N. Govender, and P. G. Pappas, Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS, AIDS, vol.23, pp.525-530, 2009.

A. Idnurm, Y. S. Bahn, K. Nielsen, X. Lin, and J. A. Fraser, Deciphering the model pathogenic fungus Cryptococcus neoformans, Nat Rev Microbiol, vol.3, pp.753-764, 2005.

T. M. Hohl, A. Rivera, and E. G. Pamer, Immunity to fungi, Curr Opin Immunol, vol.18, pp.465-472, 2006.

K. Voelz and R. C. May, Cryptococcal interactions with the host immune system, Eukaryot Cell, vol.9, pp.835-846, 2010.

M. R. Botts and C. M. Hull, Dueling in the lung: how Cryptococcus spores race the host for survival, Curr Opin Microbiol, vol.13, pp.437-442, 2010.

M. Grinsell, L. C. Weinhold, J. E. Cutler, Y. Han, and T. R. Kozel, In vivo clearance of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans: a critical role for tissue macrophages, J Infect Dis, vol.184, pp.479-487, 2001.

S. M. Levitz, Cryptococcus neoformans: intracellular or extracellular?, Trends Microbiol, vol.9, pp.417-418, 2001.

X. Shao, A. Mednick, M. Alvarez, N. Van-rooijen, and D. L. Goldman, An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia, J Immunol, vol.175, pp.3244-3251, 2005.

T. B. Kechichian, J. Shea, D. Poeta, and M. , Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice, Infect Immun, vol.75, pp.4792-4798, 2007.

J. J. Osterholzer, J. E. Milam, G. H. Chen, G. B. Toews, and G. B. Huffnagle, Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans, Infect Immun, vol.77, pp.3749-3758, 2009.

O. Zaragoza, M. L. Rodrigues, D. Jesus, M. Frases, S. Dadachova et al., The capsule of the fungal pathogen Cryptococcus neoformans, Adv Appl Microbiol, vol.68, pp.133-216, 2009.

P. Stano, V. Williams, M. Villani, E. S. Cymbalyuk, and A. Qureshi, App1: an antiphagocytic protein that binds to complement receptors 3 and 2, J Immunol, vol.182, pp.84-91, 2009.

C. D. Chun, J. C. Brown, and H. D. Madhani, A Major Role for Capsule-Independent Phagocytosis-Inhibitory Mechanisms in Mammalian Infection by Cryptococcus neoformans, Cell Host Microbe, vol.9, pp.243-251, 2011.

M. Alvarez and A. Casadevall, Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages, Curr Biol, vol.16, pp.2161-2165, 2006.

H. Ma, J. E. Croudace, and D. A. Lammas, Expulsion of live pathogenic yeast by macrophages, Curr Biol, vol.16, pp.2156-2160, 2006.

S. C. Tucker and A. Casadevall, Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm, Proc Natl Acad Sci U S A, vol.99, pp.3165-3170, 2002.

G. Nussbaum, S. Anandasabapathy, J. Mukherjee, M. Fan, and A. Casadevall, Molecular and idiotypic analyses of the antibody response to Cryptococcus neoformans glucuronoxylomannan-protein conjugate vaccine in autoimmune and nonautoimmune mice, Infect Immun, vol.67, pp.4469-4476, 1999.

S. M. Levitz, Receptor-mediated recognition of Cryptococcus neoformans, Nippon Ishinkin Gakkai Zasshi, vol.43, pp.133-136, 2002.

R. M. Kelly, J. Chen, L. E. Yauch, and S. M. Levitz, Opsonic requirements for dendritic cell-mediated responses to Cryptococcus neoformans, Infect Immun, vol.73, pp.592-598, 2005.

E. Pericolini, E. Cenci, C. Monari, D. Jesus, M. Bistoni et al., Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8, Cell Microbiol, vol.8, pp.267-275, 2006.

C. Monari, F. Paganelli, F. Bistoni, T. R. Kozel, and A. Vecchiarelli, Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms, Cell Microbiol, vol.10, pp.2129-2137, 2008.

S. N. Villena, R. O. Pinheiro, C. S. Pinheiro, M. P. Nunes, and C. M. Takiya, Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand, Cell Microbiol, vol.10, pp.1274-1285, 2008.

L. S. Chiapello, J. L. Baronetti, A. P. Garro, M. F. Spesso, and D. T. Masih, Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway, Int Immunol, vol.20, pp.1527-1541, 2008.

T. D. Gilmore, Introduction to NF-kappaB: players, pathways, perspectives, Oncogene, vol.25, pp.6680-6684, 2006.

M. S. Hayden, A. P. West, and S. Ghosh, NF-kappaB and the immune response, Oncogene, vol.25, pp.6758-6780, 2006.

J. Dutta, Y. Fan, N. Gupta, G. Fan, and C. Gelinas, Current insights into the regulation of programmed cell death by NF-kappaB, Oncogene, vol.25, pp.6800-6816, 2006.

M. S. Hayden and S. Ghosh, Shared principles in NF-kappaB signaling, Cell, vol.132, pp.344-362, 2008.

T. Lawrence, M. Bebien, G. Y. Liu, V. Nizet, and M. Karin, IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation, Nature, vol.434, pp.1138-1143, 2005.

Q. Li, Q. Lu, V. Bottero, G. Estepa, and L. Morrison, Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1), Proc Natl Acad Sci U S A, vol.102, pp.12425-12430, 2005.

G. Bonizzi and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity, Trends Immunol, vol.25, pp.280-288, 2004.

S. Vallabhapurapu and M. Karin, Regulation and function of NF-kappaB transcription factors in the immune system, Annu Rev Immunol, vol.27, pp.693-733, 2009.

E. Dejardin, The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development, Biochem Pharmacol, vol.72, pp.1161-1179, 2006.

F. Moyrand and G. Janbon, UGD1, encoding the Cryptococcus neoformans UDP-glucose dehydrogenase, is essential for growth at 37 degrees C and for capsule biosynthesis, Eukaryot Cell, vol.3, pp.1601-1608, 2004.

S. M. Levitz and D. J. Dibenedetto, Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans, J Immunol, vol.142, pp.659-665, 1989.

F. Moyrand, T. Fontaine, and G. Janbon, Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence, Mol Microbiol, vol.64, pp.771-781, 2007.

C. Charlier, F. Chretien, M. Baudrimont, E. Mordelet, and O. Lortholary, Capsule Structure Changes Associated with Cryptococcus neoformans Crossing of the Blood-Brain Barrier, Am J Pathol, vol.166, pp.421-432, 2005.

J. H. Caamano, C. A. Rizzo, S. K. Durham, D. S. Barton, and C. Raventossuarez, Nuclear factor (NF)-kappa-B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses, J Exp Med, vol.187, pp.185-196, 1998.

L. S. Michel, V. Liberal, A. Chatterjee, R. Kirchwegger, and B. Pasche, MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells, Nature, vol.409, pp.355-359, 2001.

R. Sotillo, E. Hernando, E. Diaz-rodriguez, J. Teruya-feldstein, and C. Cordon-cardo, Mad2 overexpression promotes aneuploidy and tumorigenesis in mice, Cancer Cell, vol.11, pp.9-23, 2007.

C. H. Fong, M. Bebien, A. Didierlaurent, R. Nebauer, and T. Hussell, An antiinflammatory role for IKKbeta through the inhibition of ''classical'' macrophage activation, J Exp Med, vol.205, pp.1269-1276, 2008.

C. Porta, M. Rimoldi, G. Raes, L. Brys, and P. Ghezzi, Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB, Proc Natl Acad Sci U S A, vol.106, pp.14978-14983, 2009.

K. Labbe and M. Saleh, Cell death in the host response to infection, Cell Death Differ, vol.15, pp.1339-1349, 2008.

T. Lawrence, D. W. Gilroy, P. R. Colville-nash, and D. A. Willoughby, Possible new role for NF-kappaB in the resolution of inflammation, Nat Med, vol.7, pp.1291-1297, 2001.

E. Pericolini, E. Gabrielli, E. Cenci, D. Jesus, M. Bistoni et al., Involvement of glycoreceptors in galactoxylomannan-induced T cell death, J Immunol, vol.182, pp.6003-6010, 2009.

Y. Fan, J. Dutta, N. Gupta, G. Fan, and C. Gelinas, Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy, Adv Exp Med Biol, vol.615, pp.223-250, 2008.

F. Ouaaz, M. Li, and A. A. Beg, A critical role for the RelA subunit of nuclear factor kappa B in regulation of multiple immune-response genes and in Fasinduced cell death, J Exp Med, vol.189, pp.999-1004, 1999.

J. P. Nougayrède, F. Taieb, J. De-rycke, and O. E. , Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle, Trends Microbiol, vol.13, pp.103-110, 2005.

S. F. Sieg, C. V. Harding, and M. M. Lederman, HIV-1 infection impairs cell cycle progression of CD4(+) T cells without affecting early activation responses, J Clin Invest, vol.108, pp.757-764, 2001.

J. E. Stajich and F. S. Dietrich, Evidence of mRNA-mediated intron loss in the human-pathogenic fungus Cryptococcus neoformans, Eukaryot Cell, vol.5, pp.789-793, 2006.

Y. Luo, S. C. Tucker, and A. Casadevall, Fc-and complement-receptor activation stimulates cell cycle progression of macrophage cells from G1 to S, J Immunol, vol.174, pp.7226-7233, 2005.

Y. Luo and A. Casadevall, Intracellular cryptococci suppress Fc-mediated cyclin D1 elevation, Commun Integr Biol, vol.3, pp.390-391, 2010.

B. Goudeau, F. Huetz, S. Samson, D. Santo, J. P. Cumano et al., IkappaBalpha/IkappaBepsilon deficiency reveals that a critical NF-kappaB dosage is required for lymphocyte survival, Proc Natl Acad Sci U S A, vol.100, pp.15800-15805, 2003.

B. Barre and N. D. Perkins, A cell cycle regulatory network controlling NF-kappaB subunit activity and function, Embo J, vol.26, pp.4841-4855, 2007.

G. Schneider, D. Saur, J. T. Siveke, R. Fritsch, and F. R. Greten, IKKalpha controls p52/RelB at the skp2 gene promoter to regulate G1-to S-phase progression, Embo J, vol.25, pp.3801-3812, 2006.

M. Hinz, D. Krappmann, A. Eichten, A. Heder, and C. Scheidereit, NFkappa B function in growth control: Regulation of cyclin D1 expression and G(0)G(1)-to-S-Phase transition, Mol Cell Biol, vol.19, pp.2690-2698, 1999.

J. Bash, W. X. Zong, and C. Gelinas, ) c-rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition, Mol Cell Biol, vol.17, pp.6526-6536, 1997.

V. C. Janbandhu, A. K. Singh, A. Mukherji, and V. Kumar, Negatively regulates transcription of the cyclin E gene, J Biol Chem, vol.285, pp.17453-17464, 2010.

S. R. Bartz, M. E. Rogel, and M. Emerman, Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control, J Virol, vol.70, pp.2324-2331, 1996.

K. Machida, J. C. Liu, G. Mcnamara, A. Levine, and L. Duan, Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway, J Virol, vol.83, pp.12590-12600, 2009.

M. Umeda, N. Murata-kamiya, Y. Saito, Y. Ohba, and M. Takahashi, Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability, J Biol Chem, vol.284, pp.22166-22172, 2009.

J. M. Schvartzman, R. Sotillo, and R. Benezra, Mitotic chromosomal instability and cancer: mouse modelling of the human disease, Nat Rev Cancer, vol.10, pp.102-115, 2010.

Y. H. Chi, J. M. Ward, L. I. Cheng, J. Yasunaga, and K. T. Jeang, Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice, Int J Cancer, vol.124, pp.1483-1489, 2009.