D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

C. P. Bracken, P. A. Gregory, N. Kolesnikoff, A. G. Bert, J. Wang et al., For the 3?UTR assay, the 3?UTR regions for the mRNAs of interest were PCR amplified with the human cDNAs, followed by insertion into psi-CHECK2 vectors using XhoI and NotI (RL-ZEB1 and RL-ZEB2). pCIneo-hRL-ZEB1 WT, Cancer Res, vol.68, pp.7846-7854, 2008.

. Mut-(gregory, Adelaide, Australia). pCIneo-hRL-ZEB1 200 MUT and pCIneo-hRL-ZEB2 200 MUT were generated from pCIneo-hRL-ZEB1 200b MUT and pCIneo-hRL-ZEB2 200b MUT using QuikChange Multi Site-Directed Mutagenesis kit. All primers used for the constructs were shown in Table S3. The plasmids and/or oligonucleotides were transfected into cells using Lipofectamine, Invitrogen) or Lipofectamine RNAiMAX, 2000.

H. Hermeking, p53 enters the microRNA world, Cancer Cell, vol.12, pp.414-418, 2007.

M. Kato, J. Zhang, M. Wang, L. Lanting, H. Yuan et al., MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors, Proc. Natl. Acad. Sci. USA, vol.104, pp.3432-3437, 2007.

B. C. Lewis, D. S. Klimstra, N. D. Socci, S. Xu, J. A. Koutcher et al., The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma, Mol. Cell. Biol, vol.25, pp.1228-1237, 2005.

C. G. Liu, G. A. Calin, B. Meloon, N. Gamliel, C. Sevignani et al., An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues, Proc. Natl. Acad. Sci. USA, vol.101, pp.9740-9744, 2004.

S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes Dev, vol.22, pp.894-907, 2008.

F. Pichiorri, S. S. Suh, A. Rocci, L. De-luca, C. Taccioli et al., Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development, Cancer Cell, vol.18, pp.367-381, 2010.

N. Raver-shapira, E. Marciano, E. Meiri, Y. Spector, N. Rosenfeld et al., Transcriptional activation of miR-34a contributes to p53-mediated apoptosis, Mol. Cell, vol.26, pp.731-743, 2007.

A. G. Ridgeway, J. Mcmenamin, and P. Leder, P53 levels determine outcome during beta-catenin tumor initiation and metastasis in the mammary gland and male germ cells, Oncogene, vol.25, pp.3518-3527, 2006.

T. Soussi, p53 alterations in human cancer: more questions than answers, Oncogene, vol.26, pp.2145-2156, 2007.

J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelialmesenchymal transitions, Nat. Rev. Mol. Cell Biol, vol.7, pp.131-142, 2006.

L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski et al., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science, vol.303, pp.844-848, 2004.

B. Vogelstein, D. Lane, and A. J. Levine, Surfing the p53 network, Nature, vol.408, pp.307-310, 2000.

U. Wellner, J. Schubert, U. C. Burk, O. Schmalhofer, F. Zhu et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting microRNAs, Nat. Cell Biol, vol.11, pp.1487-1495, 2009.

J. Yang and R. A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis, Dev. Cell, vol.14, pp.818-829, 2008.

C. J. Braun, X. Zhang, I. Savelyeva, S. Wolff, U. M. Moll et al., p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest, Cancer Res, vol.68, pp.10094-10104, 2008.

U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan et al., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO Rep, vol.9, pp.582-589, 2008.

G. A. Calin and C. M. Croce, MicroRNA signatures in human cancers, Nat. Rev. Cancer, vol.6, pp.857-866, 2006.

K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier et al., MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, vol.21, pp.2933-2942, 2005.

T. C. Chang, E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore et al., Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis, Mol. Cell, vol.26, pp.745-752, 2007.

C. J. Chang, C. H. Chao, W. Xia, J. Y. Yang, Y. Xiong et al., p53 regulates epithelialmesenchymal transition and stem cell properties through modulating miRNAs, Nat. Cell Biol, vol.13, pp.317-323, 2011.

N. S. Chari, N. L. Pinaire, L. Thorpe, L. J. Medeiros, M. J. Routbort et al., The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death, Apoptosis, vol.14, pp.336-347, 2009.

Y. W. Chen, D. S. Klimstra, M. E. Mongeau, J. L. Tatem, V. Boyartchuk et al., Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells, Cancer Res, vol.67, pp.7589-7596, 2007.

S. A. Georges, M. C. Biery, S. Y. Kim, J. M. Schelter, J. Guo et al., Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215, Cancer Res, vol.68, pp.10105-10112, 2008.

P. A. Gregory, A. G. Bert, E. L. Paterson, S. C. Barry, A. Tsykin et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell Biol, vol.10, pp.593-601, 2008.

J. E. Hansen, L. K. Fischer, G. Chan, S. S. Chang, S. W. Baldwin et al., Antibody-mediated p53 protein therapy prevents liver metastasis in vivo, Cancer Res, vol.67, pp.1769-1774, 2007.

L. He and G. J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation, Nat. Rev. Genet, vol.5, pp.522-531, 2004.

L. He, X. He, L. P. Lim, E. De-stanchina, Z. Xuan et al., A microRNA component of the p53 tumour suppressor network, Nature, vol.447, pp.1130-1134, 2007.