F. W. Andrewes, Studies in group-agglutination I. The salmonella group and its antigenic structure, J Pathol Bacteriol, vol.25, pp.505-521, 1922.

L. Arbibe, D. W. Kim, E. Batsche, T. Pedron, B. Mateescu et al., An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses, Nat Immunol, vol.8, pp.47-56, 2007.

E. T. Arena, F. X. Campbell-valois, J. Y. Tinevez, G. Nigro, M. Sachse et al., Bioimage analysis of Shigella infection reveals targeting of colonic crypts, Proc Natl Acad Sci, vol.112, pp.3282-3290, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02616457

E. T. Arena, J. Y. Tinevez, G. Nigro, P. J. Sansonetti, and B. S. Marteyn, The infectious hypoxia: occurrence and causes during Shigella infection, Microbes Infect, vol.19, pp.157-165, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01424920

P. Bagam, D. P. Singh, M. E. Inda, and S. Batra, Unraveling the role of membrane microdomains during microbial infections, Cell Biol Toxicol, vol.33, pp.429-455, 2017.

L. Bernstam and J. Nriagu, Molecular aspects of arsenic stress, J Toxicol Environ Health B Crit Rev, vol.3, pp.293-322, 2000.

F. Bianco, C. Perrotta, L. Novellino, M. Francolini, L. Riganti et al., Acid sphingomyelinase activity triggers microparticle release from glial cells, EMBO J, vol.28, pp.1043-1054, 2009.

A. Brotcke-zumsteg, C. Goosmann, V. Brinkmann, R. Morona, and A. Zychlinsky, IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis, Cell Host Microbe, vol.15, pp.435-445, 2014.

N. Carayol, T. Van-nhieu, and G. , Tips and tricks about Shigella invasion of epithelial cells, Curr Opin Microbiol, vol.16, pp.32-37, 2013.

L. A. Carneiro, L. H. Travassos, F. Soares, I. Tattoli, J. G. Magalhaes et al., Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells, Cell Host Microbe, vol.5, pp.123-136, 2009.

C. L. Chen, C. F. Lin, W. T. Chang, W. C. Huang, C. F. Teng et al., Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway, Blood, vol.111, pp.4365-4374, 2008.

R. Chovatiya and R. Medzhitov, Stress, inflammation, and defense of homeostasis, Mol Cell, vol.54, pp.281-288, 2014.

E. Clark, C. Hoare, J. Tanianis-hughes, G. L. Carlson, and G. Warhurst, Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process, Gastroenterology, vol.128, pp.1258-1267, 2005.

S. P. Colgan and C. T. Taylor, Hypoxia: an alarm signal during intestinal inflammation, Nat Rev Gastroenterol Hepatol, vol.7, pp.281-287, 2010.

L. Dons, E. Eriksson, Y. Jin, M. E. Rottenberg, K. Kristensson et al., Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence, Infect Immun, vol.72, pp.3237-3244, 2004.

, The Authors The EMBO Journal, vol.37, p.98529, 2018.

M. Erhardt, Strategies to block bacterial pathogenesis by interference with motility and chemotaxis, Curr Top Microbiol Immunol, vol.398, pp.185-205, 2016.

W. H. Ewing, Shigella nomenclature, J Bacteriol, vol.57, pp.633-638, 1949.

M. Faulstich, F. Hagen, E. Avota, V. Kozjak-pavlovic, A. C. Winkler et al., Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae, Cell Microbiol, vol.17, pp.241-253, 2015.

M. J. Garner, R. D. Hayward, and V. Koronakis, The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking, Cell Microbiol, vol.4, pp.153-165, 2002.

K. L. Gillen and K. T. Hughes, Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium, J Bacteriol, vol.173, pp.2301-2310, 1991.

F. M. Goni and A. Alonso, Sphingomyelinases: enzymology and membrane activity, FEBS Lett, vol.531, pp.38-46, 2002.

H. Grassme, E. Gulbins, B. Brenner, K. Ferlinz, K. Sandhoff et al., Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells, Cell, vol.91, pp.605-615, 1997.

H. Grassme, A. Jekle, A. Riehle, H. Schwarz, J. Berger et al., CD95 signaling via ceramide-rich membrane rafts, J Biol Chem, vol.276, pp.20589-20596, 2001.

H. Grassme, V. Jendrossek, A. Riehle, G. Von-kurthy, J. Berger et al., Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts, Nat Med, vol.9, pp.322-330, 2003.

Y. A. Hannun and C. Luberto, Ceramide in the eukaryotic stress response, Trends Cell Biol, vol.10, pp.73-80, 2000.

M. Holcik and N. Sonenberg, Translational control in stress and apoptosis, Nat Rev Mol Cell Biol, vol.6, pp.318-327, 2005.

R. R. Isberg, D. L. Voorhis, and S. Falkow, Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells, Cell, vol.50, pp.769-778, 1987.

L. D. Kalischuk, G. D. Inglis, and A. G. Buret, Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts, Gut Pathog, vol.1, issue.2, 2009.

V. Kapatral and S. A. Minnich, Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes, Mol Microbiol, vol.17, pp.49-56, 1995.

C. A. Kasper, I. Sorg, C. Schmutz, T. Tschon, H. Wischnewski et al., Cell-cell propagation of NF-kappaB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection, Immunity, vol.33, pp.804-816, 2010.

F. Lafont, T. Van-nhieu, G. Hanada, K. Sansonetti, P. Van-der-goot et al., Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction, EMBO J, vol.21, pp.4449-4457, 2002.

F. Lafont and F. G. Van-der-goot, Bacterial invasion via lipid rafts, Cell Microbiol, vol.7, pp.613-620, 2005.

M. A. Lai, E. K. Quarles, A. H. Lopez-yglesias, X. Zhao, A. M. Hajjar et al., Innate immune detection of flagellin positively and negatively regulates Salmonella infection, PLoS One, vol.8, p.72047, 2013.

M. Lara-tejero and J. E. Galan, Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells, Infect Immun, vol.77, pp.2635-2642, 2009.

H. Li, H. Xu, Y. Zhou, J. Zhang, C. Long et al., The phosphothreonine lyase activity of a bacterial type III effector family, Science, vol.315, pp.1000-1003, 2007.

D. Lingwood and K. Simons, Lipid rafts as a membrane-organizing principle, Science, vol.327, pp.46-50, 2010.

S. X. Liu, M. Athar, I. Lippai, C. Waldren, and T. K. Hei, Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity, Proc Natl Acad Sci, vol.98, pp.1643-1648, 2001.

H. A. Lockman, R. Curtiss, and . Iii, Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice, Infect Immun, vol.58, pp.137-143, 1990.

N. Marchesini and Y. A. Hannun, Acid and neutral sphingomyelinases: roles and mechanisms of regulation, Biochem Cell Biol, vol.82, pp.27-44, 2004.

C. Maudet, M. Mano, U. Sunkavalli, M. Sharan, M. Giacca et al., , 2014.

, microRNA family as cellular restriction factors for Salmonella infection, Nat Commun, vol.5, p.4718

B. D. Mccollister, J. T. Myers, J. Jones-carson, D. R. Voelker, and A. Vazquez-torres, Constitutive acid sphingomyelinase enhances early and late macrophage killing of Salmonella enterica serovar Typhimurium, Infect Immun, vol.75, pp.5346-5352, 2007.

R. Menard, P. J. Sansonetti, and C. Parsot, Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells, J Bacteriol, vol.175, pp.5899-5906, 1993.

B. Misselwitz, S. Dilling, P. Vonaesch, R. Sacher, B. Snijder et al., RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42, Mol Syst Biol, vol.7, p.474, 2011.

B. Misselwitz, S. K. Kreibich, S. Rout, B. Stecher, B. Periaswamy et al., Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking, Infect Immun, vol.79, pp.330-341, 2011.

B. Misselwitz, N. Barrett, S. Kreibich, P. Vonaesch, D. Andritschke et al., Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion, PLoS Pathog, vol.8, p.1002810, 2012.

J. Mounier, T. Vasselon, R. Hellio, M. Lesourd, and P. J. Sansonetti, Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole, Infect Immun, vol.60, pp.237-248, 1992.

M. Ogawa, Y. Handa, H. Ashida, M. Suzuki, and C. Sasakawa, The versatility of Shigella effectors, Nat Rev Microbiol, vol.6, pp.11-16, 2008.

J. E. Olsen, K. H. Hoegh-andersen, J. Casadesus, J. Rosenkranzt, M. S. Chadfield et al., The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium, BMC Microbiol, vol.13, p.67, 2013.

C. Parsot, Shigella type III secretion effectors: how, where, when, for what purposes?, Curr Opin Microbiol, vol.12, pp.110-116, 2009.

T. Pedron, C. Thibault, and P. J. Sansonetti, The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2, J Biol Chem, vol.278, pp.33878-33886, 2003.

M. Peel, W. Donachie, and A. Shaw, Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting, J Gen Microbiol, vol.134, pp.2171-2178, 1988.

O. J. Perdomo, J. M. Cavaillon, M. Huerre, H. Ohayon, P. Gounon et al., Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis, J Exp Med, vol.180, pp.1307-1319, 1994.

L. W. Peterson and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat Rev Immunol, vol.14, pp.141-153, 2014.

J. Pizarro-cerda and P. Cossart, Bacterial adhesion and entry into host cells, Cell, vol.124, pp.715-727, 2006.

Y. Rossez, E. B. Wolfson, A. Holmes, D. L. Gally, and N. J. Holden, Bacterial flagella: twist and stick, or dodge across the kingdoms, PLoS Pathog, vol.11, p.1004483, 2015.

P. J. Sansonetti, War and peace at mucosal surfaces, Nat Rev Immunol, vol.4, pp.953-964, 2004.

A. J. Santos, M. Meinecke, M. B. Fessler, D. W. Holden, and E. Boucrot, Preferential invasion of mitotic cells by Salmonella reveals that cell surface cholesterol is maximal during metaphase, J Cell Sci, vol.126, pp.2990-2996, 2013.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

M. C. Schlumberger, A. J. Muller, K. Ehrbar, B. Winnen, I. Duss et al., Real-time imaging of type III secretion: Salmonella SipA injection into host cells, Proc Natl Acad Sci, vol.102, pp.12548-12553, 2005.

M. Schramm, J. Herz, A. Haas, M. Kronke, and O. Utermohlen, Acid sphingomyelinase is required for efficient phago-lysosomal fusion, Cell Microbiol, vol.10, pp.1839-1853, 2008.

G. N. Schroeder and H. Hilbi, Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion, Clin Microbiol Rev, vol.21, pp.134-156, 2008.

S. Seveau, H. Bierne, S. Giroux, M. C. Prevost, and P. Cossart, Role of lipid rafts in E-cadherin-and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells, J Cell Biol, vol.166, pp.743-753, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02679649

E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nat Rev Mol Cell Biol, vol.18, pp.361-374, 2017.

A. Simonis, S. Hebling, E. Gulbins, S. Schneider-schaulies, and A. Schubert-unkmeir, Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells, PLoS Pathog, vol.10, p.1004160, 2014.

B. Stecher, S. Hapfelmeier, C. Muller, M. Kremer, T. Stallmach et al., Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice, Infect Immun, vol.72, pp.4138-4150, 2004.

B. Stecher, M. Barthel, M. C. Schlumberger, L. Haberli, W. Rabsch et al., Motility allows S. Typhimurium to benefit from the mucosal defence, Cell Microbiol, vol.10, pp.1166-1180, 2008.

D. H. Stones and A. M. Krachler, Against the tide: the role of bacterial adhesion in host colonization, Biochem Soc Trans, vol.44, pp.1571-1580, 2016.

U. Sunkavalli, C. Aguilar, R. J. Silva, M. Sharan, A. R. Cruz et al., Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia, PLoS Pathog, vol.13, p.1006327, 2017.

T. Suzuki, Y. Yoshikawa, H. Ashida, H. Iwai, T. Toyotome et al., High vaccine efficacy against shigellosis of recombinant noninvasive Shigella mutant that expresses Yersinia invasin, J Immunol, vol.177, pp.4709-4717, 2006.

A. Swidsinski, V. Loening-baucke, F. Theissig, H. Engelhardt, S. Bengmark et al., Comparative study of the intestinal mucus barrier in normal and inflamed colon, Gut, vol.56, pp.343-350, 2007.

L. Tonnetti, M. C. Veri, E. Bonvini, D. 'adamio, and L. , A role for neutral sphingomyelinase-mediated ceramide production in T cell receptorinduced apoptosis and mitogen-activated protein kinase-mediated signal transduction, J Exp Med, vol.189, pp.1581-1589, 1999.

O. Utermohlen, U. Karow, J. Lohler, and M. Kronke, Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase, J Immunol, vol.170, pp.2621-2628, 2003.

O. Utermohlen, J. Herz, M. Schramm, and M. Kronke, Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses, Immunobiology, vol.213, pp.307-314, 2008.

J. S. Wassef, D. F. Keren, and J. L. Mailloux, Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis, Infect Immun, vol.57, pp.858-863, 1989.

N. E. Zeitouni, S. Chotikatum, V. Kockritz-blickwede, M. Naim, and H. Y. , The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens, Mol Cell Pediatr, vol.3, 2016.

, License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited, The Authors The EMBO Journal, vol.37, p.98529, 2018.