L. Bell and B. Byers, Separation of branched from linear DNA by two-dimensional gel electrophoresis, Anal Biochem, vol.130, pp.527-535, 1983.

B. J. Brewer and W. L. Fangman, The localization of replication origins on, ARS plasmids in S. cerevisiae. Cell, vol.51, pp.463-471, 1987.

J. B. Schvartzman, M. L. Martinez-robles, V. Lopez, P. Hernandez, and D. B. Krimer, 2D gels and their third-dimension potential, Methods, vol.57, pp.170-178, 2012.

A. Schwacha and N. Kleckner, Identification of double Holliday junctions as intermediates in meiotic recombination, Cell, vol.83, pp.783-791, 1995.

N. Hunter and N. Kleckner, The single-end invasion: an assymetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination, Cell, vol.106, pp.59-70, 2001.

J. C. Kim and S. M. Mirkin, The balancing act of DNA repeat expansions, Curr Opin Genet Dev, vol.23, pp.280-288, 2013.

G. Richard, A. Kerrest, and B. Dujon, Comparative genomics and molecular dynamics of DNA repeats in eukaryotes, Microbiol Mol Biol Rev, vol.72, pp.686-727, 2008.

C. E. Pearson, K. N. Edamura, and J. D. Cleary, Repeat instability: mechanisms of dynamic mutations, Nat Rev Genet, vol.6, pp.729-742, 2005.

C. T. Mcmurray, Mechanisms of trinucleotide repeat instability during human development, Nat Rev Genet, vol.11, pp.786-799, 2010.

K. Usdin, N. C. House, and C. H. Freudenreich, Repeat instability during DNA repair: insights from model systems, Crit Rev Biochem Mol Biol, vol.50, issue.2, pp.142-167, 2015.

H. T. Orr and H. Y. Zoghbi, Trinucleotide repeat disorders, Annu Rev Neurosci, vol.30, pp.575-621, 2007.

C. T. Mcmurray, DNA secondary structure: a common and causative factor for expansion in human disease, Proc Natl Acad Sci U S A, vol.96, pp.1823-1825, 1999.

G. Samadashwily, G. Raca, and S. M. Mirkin, Trinucleotide repeats affect DNA replication in vivo, Nat Genet, vol.17, pp.298-304, 1997.

R. Pelletier, M. M. Krasilnikova, G. M. Samadashwily, R. Lahue, and S. M. Mirkin, Replication and expansion of trinucleotide repeats in yeast, Mol Cell Biol, vol.23, pp.1349-1357, 2003.

R. P. Anand, Overcoming natural replication barriers: differential helicase requirements, Nucleic Acids Res, vol.40, pp.1091-1105, 2012.

D. Viterbo, G. Michoud, V. Mosbach, B. Dujon, and G. Richard, Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair, DNA Repair, vol.42, pp.94-106, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299733

N. Saini, Migrating bubble during break-induced replication drives conservative DNA synthesis, Nature, vol.502, pp.389-392, 2013.

N. Sugawara and J. E. Haber, Characterization of double-strand break-induced recombination: homology requirements and singlestranded DNA formation, Mol Cell Biol, vol.12, pp.563-575, 1992.

J. C. Kim, S. T. Harris, T. Dinter, K. A. Shah, and S. M. Mirkin, The role of break-induced replication in large-scale expansions of (CAG)n/ (CTG)n repeats, Nat Struct Mol Biol, vol.24, pp.55-60, 2017.

V. Mosbach, L. Poggi, D. Viterbo, M. Charpentier, and G. Richard, TALEN-induced double-strand break repair of CTG trinucleotide repeats, Cell Rep, vol.22, pp.2146-2159, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727334

G. Richard, G. M. Goellner, C. T. Mcmurray, and J. E. Haber, Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11/RAD50/XRS2 complex, EMBO J, vol.19, pp.2381-2390, 2000.

V. Mosbach, L. Poggi, and G. Richard, Trinucleotide repeat instability during doublestrand break repair: from mechanisms to gene therapy, Curr Genet, vol.65, issue.1, pp.17-28, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02864590

M. Gomes-pereira and D. G. Monckton, Ethidium bromide modifies the agarose electrophoretic mobility of CAG?CTG alternative DNA structures generated by PCR, Front Cell Neurosci, vol.11, p.153, 2017.

M. Fierro-fernandez, P. Hernandez, D. B. Krimer, and J. B. Schvartzman, Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains, J Biol Chem, vol.282, pp.18190-18196, 2007.

M. Fierro-fernandez, P. Hernandez, D. B. Krimer, and J. B. Schvartzman, Topological locking restrains replication fork reversal, Proc Natl Acad Sci, vol.104, pp.1500-1505, 2007.

M. Marbouty, C. Ermont, B. Dujon, G. Richard, and R. Koszul, Purification of G1 daughter cells from different Saccharomycetes species through an optimized centrifugal elutriation procedure, Yeast, vol.31, pp.159-166, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01420008

A. Holmes, Lsd1 and lsd2 control programmed replication fork pauses and imprinting in fission yeast, Cell Rep, vol.2, pp.1513-1520, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02013826

M. Lopes, C. Cotta-ramusino, G. Liberi, and M. Foiani, Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms, Mol Cell, vol.12, pp.1499-1510, 2003.

G. Liberi, Methods to study replication fork collapse in budding yeast, Methods Enzym, vol.409, pp.442-462, 2006.

C. B. Brachmann, Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, vol.14, pp.115-132, 1998.