G. Richard, A. Kerrest, and B. Dujon, Comparative genomics and molecular dynamics of DNA repeats in eukaryotes, Microbiol Mol Biol Rev, vol.72, pp.686-727, 2008.

J. D. Brook, Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3? end of a transcript encoding a protein kinase family member, Cell, vol.68, pp.799-808, 1992.

Y. Fu, Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox, Cell, vol.67, pp.1047-1058, 1991.

Y. H. Fu, An unstable triplet repeat in a gene related to myotonic muscular dystrophy, Science, vol.255, pp.1256-1258, 1992.

C. T. Mcmurray, Mechanisms of trinucleotide repeat instability during human development, Nat Rev Genet, vol.11, pp.786-799, 2010.

S. M. Mirkin, Expandable DNA repeats and human disease, Nature, vol.447, pp.932-940, 2007.

V. Mosbach, L. Poggi, and G. Richard, Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy, Curr Genet, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02864590

C. E. Pearson, K. N. Edamura, and J. D. Cleary, Repeat instability: mechanisms of dynamic mutations, Nat Rev Genet, vol.6, pp.729-742, 2005.

K. Usdin, N. C. House, and C. H. Freudenreich, Repeat instability during DNA repair: insights from model systems, Crit Rev Biochem Mol Biol, 2015.

A. M. Gacy, G. Goellner, N. Juranic, S. Macura, and C. T. Mcmurray, Trinucleotide repeats that expand in human disease form hairpin structures in vitro, Cell, vol.81, pp.533-540, 1995.

M. Mitas, Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15, Nucleic Acids Res, vol.23, pp.1050-1059, 1995.

A. Yu and M. Mitas, The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins, Nucleic Acids Res, vol.23, pp.4055-4057, 1995.

A. Yu, The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation, Nucleic Acids Res, vol.23, pp.2706-2714, 1995.

Y. Nadel, P. Weisman-shomer, and M. Fry, The fragile X syndrome single strand d(CGG) n nucleotide repeats readily fold back to form unimolecular hairpin structures, J Biol Chem, vol.48, pp.28970-28977, 1995.

P. Pinheiro, Structures of CUG repeats in RNA, J Biol Chem, vol.277, pp.35183-35190, 2002.

K. Sobczak, M. De-mezer, G. Michlewski, J. Krol, and W. J. Krzyzosiak, RNA structure of trinucleotide repeats associated with human neurological diseases, Nucleic Acids Res, vol.31, pp.5469-5482, 2003.

S. V. Mariappan, P. Catasti, L. A. Silks, E. M. Bradbury, and G. Gupta, The highresolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich's ataxia, J Mol Biol, vol.285, pp.2035-2052, 1999.

I. S. Suen, Structural properties of Friedreich's ataxia d(GAA) repeats, Biochim Biophys Acta, vol.1444, pp.14-24, 1999.

S. M. Mirkin, DNA H form requires a homopurine-homopyrimidine mirror repeat, Nature, vol.330, pp.495-497, 1987.

P. Fojtik and M. Vorlickova, The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH, Nucleic Acids Res, vol.29, pp.4684-4690, 2001.

M. Fry and L. A. Loeb, The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure, Proc Natl Acad Sci U S A, vol.91, pp.4950-4954, 1994.

C. E. Pearson, Slipped-strand DNAs formed by long (CAG) * (CTG) repeats: slipped-out repeats and slip-out junctions, Nucleic Acids Res, vol.30, pp.4534-4547, 2002.

D. Duzdevich, Unusual structures are present in DNA fragments containing super-long huntingtin CAG repeats, PLoS One, vol.6, p.17119, 2011.

C. T. Mcmurray, DNA secondary structure: a common and causative factor for expansion in human disease, Proc Natl Acad Sci U S A, vol.96, pp.1823-1825, 1999.

A. A. Larrea, S. A. Lujan, and T. A. Kunkel, SnapShot: DNA mismatch repair, Cell, vol.141, p.1, 2010.

B. D. Harfe and S. Jinks-robertson, Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae, Genetics, vol.156, pp.571-578, 2000.

M. Strand, T. A. Prolla, R. M. Liskay, and T. D. Petes, Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair, Nature, vol.365, pp.274-276, 1993.

H. T. Tran, J. D. Keen, M. Kricker, M. A. Resnick, and D. A. Gordenin, Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants, Mol Cell Biol, vol.17, pp.2859-2865, 1997.

A. A. Mansour, C. Tornier, E. Lehmann, M. Darmon, and O. Fleck, Control of GT repeat stability in Schizosaccharomyces pombe by mismatch repair factors, Genetics, vol.158, pp.77-85, 2001.

J. Jiricny, The multifaceted mismatchrepair system, Nat Rev Mol Cell Biol, vol.7, pp.335-346, 2006.

J. J. Miret, L. Pessoa-brandão, and R. S. Lahue, Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae, Proc Natl Acad Sci U S A, vol.95, pp.12438-12443, 1998.

J. J. Miret, L. Pessoa-brandao, and R. S. Lahue, Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae, Mol Cell Biol, vol.17, pp.3382-3387, 1997.

G. Richard, B. Dujon, and J. E. Haber, Double-strand break repair can lead to high frequencies of deletions within short CAG/ CTG trinucleotide repeats, Mol Gen Genet, vol.261, pp.871-882, 1999.

J. K. Schweitzer and D. M. Livingston, Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast, Hum Mol Genet, vol.6, pp.349-355, 1997.

C. E. Pearson, A. Ewel, S. Acharya, R. A. Fishel, and R. R. Sinden, Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases, Hum Mol Genet, vol.6, pp.1117-1123, 1997.

B. A. Owen, CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition, Nat Struct Mol Biol, vol.12, pp.663-670, 2005.

L. Tian, Mismatch recognition protein MutSbeta does not hijack (CAG)n hairpin repair in vitro, J Biol Chem, vol.284, pp.20452-20456, 2009.

K. Manley, T. L. Shirley, L. Flaherty, and A. Messer, Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice, Nat Genet, vol.23, pp.471-473, 1999.

C. Savouret, CTG repeat instability and size variation timing in DNA repairdeficient mice, EMBO J, vol.22, pp.2264-2273, 2003.

S. Tome, MSH2 ATPase domain mutation affects CTG * CAG repeat instability in transgenic mice, PLoS Genet, vol.5, p.1000482, 2009.

G. M. Williams and J. A. Surtees, MSH3 promotes dynamic behavior of trinucleotide repeat tracts in vivo, Genetics, vol.200, pp.737-754, 2015.

D. Viterbo, G. Michoud, V. Mosbach, B. Dujon, and G. Richard, Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair, DNA Repair, vol.42, pp.94-106, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299733

R. A. Lokanga, X. N. Zhao, and K. Usdin, The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model, Hum Mutat, vol.35, pp.129-136, 2014.

V. Ezzatizadeh, The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model, Neurobiol Dis, vol.46, pp.165-171, 2012.

E. Dandelot and G. Gourdon, The flashsmall-pool PCR: how to transform blotting and numerous hybridization steps into a simple denatured PCR, BioTechniques, vol.64, pp.262-265, 2018.

M. Gomes-pereira, S. I. Bidichandani, and D. G. Monckton, Analysis of unstable triplet repeats using small-pool polymerase chain reaction, Kohwi Y (ed) Trinucleotide repeat protocols, pp.61-76, 2004.

S. Tome, A. Nicole, M. Gomes-pereira, and G. Gourdon, Non-radioactive detection of trinucleotide repeat size variability, PLoS Curr, vol.6, 2014.

J. H. Cummins, The unique alteration of electrophoretic mobility of fragile-X-expanded fragments in the presence of ethidium bromide, Tech Tips Online, vol.2, pp.84-86, 1997.

M. Gomes-pereira and D. G. Monckton, Ethidium bromide modifies the agarose electrophoretic mobility of CAG·CTG alternative DNA structures generated by PCR, Front Cell Neurosci, vol.11, p.153, 2017.

N. Sakamoto, Sticky DNA: selfassociation properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia, Mol Cell, vol.3, pp.465-475, 1999.