, disease caused by an intronic GAA triplet repeat expansion, Science, vol.271, pp.1423-1427

T. Cermak, E. L. Doyle, and M. Christian, Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res, vol.39, p.82, 2011.

C. Cinesi, L. Aeschbach, B. Yang, and V. Dion, Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase, Nature Communications, vol.7, p.13272, 2016.

L. Colleaux, L. Auriol, and M. Betermier, Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. Coli as a specific double strand break endonuclease, Cell, vol.44, pp.521-533, 1986.

M. Dabrowska, W. Juzwa, W. J. Krzyzosiak, and M. Olejniczak, Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases, Front Neurosci, vol.12, 2018.

J. A. Doudna and E. Charpentier, Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, vol.346, p.1258096, 2014.

B. Dujon, Group I introns as mobile genetic elements: facts and mechanistic speculations--a review, Gene, vol.82, pp.91-114, 1989.

C. H. Freudenreich, S. M. Kantrow, and V. A. Zakian, Expansion and length-dependent fragility of CTG repeats in yeast, Science, vol.279, pp.853-856, 1998.

Y. Fu, D. Kuhl, and A. Pizzuti, Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox, Cell, vol.67, pp.1047-1058, 1991.

E. Gladyshev and N. Kleckner, Recombination-independent recognition of DNA homology for repeat-induced point mutation, Curr Genet, vol.63, pp.389-400, 2017.

E. Haapaniemi, S. Botla, and J. Persson, CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response, Nature Medicine, vol.1, 2018.

R. J. Ihry, K. A. Worringer, and M. R. Salick, inhibits CRISPR-Cas9 engineering in human pluripotent stem cells, Nature Medicine, vol.1, p.53, 2018.

C. Jankowski, F. Nasar, and D. K. Nag, Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast, Proc Natl Acad Sci, vol.97, pp.2134-2139, 2000.

A. Kerrest, R. Anand, and R. Sundararajan, SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination, Nature Structural and Molecular Biology, vol.16, pp.159-167, 2009.

H. Kim, V. Narayanan, and P. A. Mieczkowski, Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair, EMBO J, vol.27, pp.2896-2906, 2008.

J. C. Kim, S. T. Harris, and T. Dinter, The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)nrepeats, Nat Struct Mol Biol, vol.24, pp.55-60, 2017.

J. C. Kim and S. M. Mirkin, The balancing act of DNA repeat expansions, Current Opinion in Genetics & Development, vol.23, pp.280-288, 2013.

Y. G. Kim, J. Cha, and S. Chandrasegaran, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain, Proc Natl Acad Sci, pp.1156-60, 1996.

B. P. Kleinstiver, V. Pattanayak, and M. S. Prew, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, vol.529, pp.490-495, 2016.

R. Kostriken, J. N. Strathern, and A. J. Klar, A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae, Cell, vol.35, issue.83, pp.90219-90221, 1983.

M. Lahiri, T. L. Gustafson, E. R. Majors, and C. H. Freudenreich, Expanded CAG repeats activate the DNA damage checkpoint pathway, Mol Cell, vol.15, pp.287-293, 2004.

B. M. Lengsfeld, A. J. Rattray, and V. Bhaskara, Sae2 Is an Endonuclease that Processes Hairpin DNA Cooperatively with the Mre11/Rad50/Xrs2 Complex, Molecular Cell, vol.28, pp.638-651, 2007.

Y. Li, U. Polak, and A. D. Bhalla, Excision of Expanded GAA Repeats Alleviates the Molecular Phenotype of Friedreich's Ataxia, Mol Ther, vol.23, pp.1055-1065, 2015.

G. Liu, X. Chen, and J. J. Bissler, Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells, Nat Chem Biol, vol.6, pp.652-661, 2010.

B. Llorente, C. E. Smith, and L. S. Symington, Break-induced replication: what is it and what is it for?, Cell Cycle, vol.7, pp.859-864, 2008.

C. Long, L. Amoasii, and A. A. Mireault, Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy, Science, vol.351, pp.400-403, 2016.

J. R. Lydeard, S. Jain, M. Yamaguchi, and J. E. Haber, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, vol.448, pp.820-823, 2007.

M. S. Mahadevan, R. S. Yadava, and Q. Yu, Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy, Nat Genet, vol.38, pp.1066-1070, 2006.

R. J. Mcginty and S. M. Mirkin, Cis-and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics, Trends Genet, vol.34, pp.448-465, 2018.

R. J. Mcginty, R. G. Rubinstein, and A. J. Neil, Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair, Genome Res, vol.27, pp.2072-2082, 2017.

C. T. Mcmurray, Mechanisms of trinucleotide repeat instability during human development, Nat Rev Genet, vol.11, pp.786-99, 2010.

J. L. Meservy, R. G. Sargent, and R. R. Iyer, Long CTG Tracts from the Myotonic Dystrophy Gene Induce Deletions and Rearrangements during Recombination at the APRT Locus in CHO Cells, Mol Cell Biol, vol.23, pp.3152-3162, 2003.

J. W. Miller, C. R. Urbinati, and P. Teng-umnuay, Recruitment of human musclebind proteins to (CUG)n expansions associated with myotonic dystrophy, EMBO J, vol.19, pp.4439-4448, 2000.

A. M. Monteys, S. A. Ebanks, M. S. Keiser, and B. L. Davidson, CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo, Mol Ther, vol.25, pp.12-23, 2017.

V. Mosbach, L. Poggi, and D. Viterbo, TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats, Cell Rep, vol.22, pp.2146-2159, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727334

M. E. Moynahan, J. W. Chiu, B. H. Koller, and M. Jasin, Brca1 controls homology-directed DNA repair, Mol Cell, vol.4, pp.511-519, 1999.

M. E. Moynahan, A. J. Pierce, and M. Jasin, BRCA2 is required for homology-directed repair of chromosomal breaks, Mol Cell, vol.7, pp.263-72, 2001.

N. Alexander, J. Kim-jane, C. , M. Sergei, and M. , Precarious maintenance of simple DNA repeats in eukaryotes, BioEssays, vol.39, p.1700077, 2017.

C. E. Nelson, C. H. Hakim, and D. G. Ousterout, In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy, Science, vol.351, pp.403-407, 2016.

J. Nguyen, D. Viterbo, and R. P. Anand, Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats, Nucleic Acids Res, vol.45, pp.4519-4531, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526732

K. L. O'hoy, C. Tsilfidis, and M. S. Mahadevan, Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission, Science, vol.259, pp.809-821, 1993.

D. L. Ouellet, K. Cherif, J. Rousseau, and J. P. Tremblay, Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia, Gene Ther, vol.24, pp.265-274, 2017.

B. Owen, Z. Yang, and M. Lai, CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition, Nat Struct Mol Biol, vol.12, pp.663-670, 2005.

C. Park, T. Halevy, and D. R. Lee, Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons, Cell Rep, vol.13, pp.234-241, 2015.

C. E. Pearson, A. Ewel, and S. Acharya, Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases, Hum Mol Genet, vol.6, pp.1117-1123, 1997.

C. Provenzano, M. Cappella, and R. Valaperta, CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients, Mol Ther Nucleic Acids, vol.9, pp.337-348, 2017.

G. F. Richard, C. Cyncynatus, and B. Dujon, Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism, J Mol Biol, vol.326, pp.769-782, 2003.

G. F. Richard, B. Dujon, and J. E. Haber, Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats, Mol Gen Genet, vol.261, pp.871-882, 1999.

G. F. Richard, G. M. Goellner, C. T. Mcmurray, and J. E. Haber, Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex, EMBO J, vol.19, pp.2381-2390, 2000.

G. F. Richard, A. Kerrest, and B. Dujon, Comparative genomics and molecular dynamics of DNA repeats in eukaryotes, Microbiol Mol Biol Rev, vol.72, pp.686-727, 2008.

G. Richard and F. Pâques, Mini-and microsatellite expansions: the recombination connection, EMBO Reports, vol.1, pp.122-126, 2000.

G. Richard, D. Viterbo, and V. Khanna, Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast, PLoS ONE, vol.9, p.95611, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370694

G. Ruan, E. Barry, and D. Yu, CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10, Mol Ther, vol.25, pp.331-341, 2017.

C. Savouret, E. Brisson, and J. Essers, CTG repeat instability and size variation timing in DNA repair-deficient mice, Embo J, vol.22, pp.2264-73, 2003.

J. W. Shin, K. Kim, and M. J. Chao, Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9, Hum Mol Genet, vol.25, pp.4566-4576, 2016.

A. A. Shishkin, I. Voineagu, and R. Matera, Large-scale expansions of Friedreich's ataxia GAA repeats in yeast, Mol Cell, vol.35, pp.82-92, 2009.

M. M. Slean, G. B. Panigrahi, and A. L. Castel, Absence of MutS? leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks, DNA Repair (Amst), vol.42, pp.107-118, 2016.

R. Sundararajan, L. Gellon, R. M. Zunder, and C. H. Freudenreich, Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae, Genetics, vol.184, pp.65-77, 2010.

M. Tabebordbar, K. Zhu, and J. Cheng, In vivo gene editing in dystrophic mouse muscle and muscle stem cells, Science, vol.351, pp.407-411, 2016.

K. Takahashi, K. Tanabe, and M. Ohnuki, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, pp.861-872, 2007.

S. Tomé, I. Holt, and W. Edelmann, MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice, PLoS Genet, vol.5, p.1000482, 2009.

S. Tomé, K. Manley, and J. P. Simard, MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice, PLoS Genet, vol.9, p.1003280, 2013.

S. Q. Tsai, N. T. Nguyen, and J. Malagon-lopez, CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets, Nat Meth, vol.14, pp.607-614, 2017.

S. Q. Tsai, Z. Zheng, and N. T. Nguyen, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat Biotechnol, vol.33, pp.187-97, 2015.

K. Usdin, N. C. House, and C. H. Freudenreich, Repeat instability during DNA repair: Insights from model systems, Critical Reviews in Biochemistry and Molecular Biology, 2015.

A. Verkerk, M. Pieretti, and J. S. Sutcliffe, Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome, Cell, vol.65, pp.905-914, 1991.

D. Viterbo, G. Michoud, and V. Mosbach, Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair, DNA Repair (Amst), vol.42, pp.94-106, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299733

G. M. Williams and J. A. Surtees, MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo, Genetics, vol.200, pp.737-754, 2015.

G. Xia, Y. Gao, and S. Jin, Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells, Stem Cells, vol.33, pp.1829-1867, 2015.

N. Xie, H. Gong, and J. A. Suhl, Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome, PLOS ONE, vol.11, p.165499, 2016.

A. Yamamoto, J. J. Lucas, and R. Hen, Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease, Cell, vol.101, pp.80623-80629, 2000.

Y. Ye, L. Kirkham-mccarthy, and R. S. Lahue, The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination, DNA Repair (Amst), vol.43, pp.1-8, 2016.

J. Yu, M. A. Vodyanik, and K. Smuga-otto, Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, Science, vol.318, pp.1917-1920, 2007.

S. Yu, M. Pritchard, and E. Kremer, Fragile X genotype characterized by an unstable region of DNA, Science, vol.252, pp.1179-81, 1991.

D. Yudkin, B. E. Hayward, and M. I. Aladjem, Chromosome fragility and the abnormal replication of the FMR1 locus in fragile X syndrome, Hum Mol Genet, vol.23, pp.2940-2952, 2014.