R. P. Anand, K. A. Shah, H. Niu, P. Sung, S. M. Mirkin et al., Overcoming natural replication barriers: differential helicase requirements, Nucleic Acids Res, vol.40, pp.1091-1105, 2012.

B. S. Balakumaran, C. H. Freudenreich, and V. A. Zakian, CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae, Hum Mol Genet, vol.9, pp.93-100, 2000.

A. Casini, M. Olivieri, G. Petris, C. Montagna, G. Reginato et al., A highly specific SpCas9 variant is identified by in vivo screening in yeast, Nat. Biotechnol, vol.36, pp.265-271, 2018.

M. Charpentier, A. H. Khedher, S. Menoret, A. Brion, K. Lamribet et al., CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair, Nat. Commun, vol.9, p.1133, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02156427

H. Chen, M. Lisby, and L. S. Symington, RPA coordinates DNA end resection and prevents formation of DNA hairpins, Mol Cell, vol.50, pp.589-600, 2013.

J. S. Chen, Y. S. Dagdas, B. P. Kleinstiver, M. M. Welch, A. A. Sousa et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, Nature, vol.550, pp.407-410, 2017.

C. Cinesi, L. Aeschbach, B. Yang, D. , and V. , Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase, Nat. Commun, vol.7, p.13272, 2016.

M. A. Depristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nat Genet, vol.43, pp.491-498, 2011.

J. E. Dicarlo, J. E. Norville, P. Mali, X. Rios, J. Aach et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res, vol.41, pp.4336-4343, 2013.

C. Fairhead and B. Dujon, Consequences of unique double-stranded breaks in yeast chromosomes: death or homozygosis, Mol Gen Genet, vol.240, pp.170-180, 1993.

D. Field and C. Wills, Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces, Proc Natl Acad Sci, vol.95, pp.1647-1652, 1998.

M. Frank-vaillant and S. Marcand, NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the Ligase IV pathway, Genes&Development, vol.15, pp.3005-3012, 2001.

C. H. Freudenreich, S. M. Kantrow, and V. A. Zakian, Expansion and lengthdependent fragility of CTG repeats in yeast, Science, vol.279, pp.853-856, 1998.

A. Fungtammasan, G. Ananda, S. E. Hile, M. S. Su, .. Sun et al., Accurate typing of short tandem repeats from genome-wide sequencing data and its applications, Genome Res, 2015.

A. M. Gacy, G. Goellner, N. Juranic, S. Macura, and C. T. Mcmurray, Trinucleotide repeats that expand in human disease form hairpin structures in vitro, Cell, vol.81, pp.533-540, 1995.

J. E. Haber, In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases, BioEssays, vol.17, pp.609-620, 1995.

J. E. Haber, The many interfaces of Mre11, Cell, vol.95, pp.583-586, 1998.

M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, J. Mianné et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR, Genome Biol, vol.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346049

A. M. Holmes and J. E. Haber, Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases, Nature, vol.96, pp.931-945, 1999.

B. P. Kleinstiver, V. Pattanayak, M. S. Prew, S. Q. Tsai, N. T. Nguyen et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide offtarget effects, Nature, vol.529, pp.490-495, 2016.

D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. Mclellan et al., VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing, Genome Res, vol.22, pp.568-576, 2012.

B. O. Krogh and L. S. Symington, Recombination proteins in yeast, Annu. Rev. Genet, vol.38, pp.233-271, 2004.

J. K. Lee, E. Jeong, J. Lee, M. Jung, E. Shin et al., Directed evolution of CRISPR-Cas9 to increase its specificity, Nat. Commun, vol.9, p.3048, 2018.

B. R. Lemos, A. C. Kaplan, J. E. Bae, A. E. Ferrazzoli, J. Kuo et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles, Proc. Natl. Acad. Sci, vol.115, pp.2040-2047, 2018.

B. M. Lengsfeld, A. J. Rattray, V. Bhaskara, R. Ghirlando, and T. T. Paull, Sae2 Is an Endonuclease that Processes Hairpin DNA Cooperatively with the Mre11/Rad50/Xrs2 Complex, Mol. Cell, vol.28, pp.638-651, 2007.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinforma. Oxf. Engl, vol.25, pp.1754-1760, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

A. Malpertuy, B. Dujon, R. , and G. , Analysis of microsatellites in 13 hemiascomycetous yeast species: mechanisms involved in genome dynamics, J. Mol. Evol, vol.56, pp.730-741, 2003.

E. P. Mimitou and L. S. Symington, Sae2, Exo1 and Sgs1 collaborate in DNA doublestrand break processing, Nature, vol.455, pp.770-774, 2008.

V. Mosbach, L. Poggi, D. Viterbo, M. Charpentier, R. et al., TALENinduced double-strand break repair of CTG trinucleotide repeats, Cell Rep, vol.22, pp.2146-2159, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727334

H. Muller, N. Annaluru, J. W. Schwerzmann, S. M. Richardson, J. S. Dymond et al., Assembling large DNA segments in yeast, Methods Mol. Biol. Clifton NJ, vol.852, pp.133-150, 2012.

B. E. Nelms, R. S. Maser, J. F. Mackay, M. G. Lagally, and J. H. Petrini, Situ Visualization of DNA Double-Strand Break Repair in Human Fibroblasts, vol.280, pp.590-592, 1998.

J. H. Nguyen, D. Viterbo, R. P. Anand, L. Verra, L. Sloan et al., Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats, Nucleic Acids Res, vol.45, pp.4519-4531
URL : https://hal.archives-ouvertes.fr/hal-01526732

H. T. Orr and H. Y. Zoghbi, Trinucleotide repeat disorders, Annu Rev Neurosci, vol.30, pp.575-621, 2007.

T. L. Orr-weaver, J. W. Szostak, and R. J. Rothstein, Yeast transformation: a model system for the study of recombination, Proc. Natl. Acad. Sci. U. S. A, vol.78, pp.6354-6358, 1981.

M. Van-overbeek, D. Capurso, M. M. Carter, M. S. Thompson, E. Frias et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks, Mol. Cell, vol.63, pp.633-646, 2016.

R. Pelletier, M. M. Krasilnikova, G. M. Samadashwily, R. Lahue, and S. M. Mirkin, Replication and expansion of trinucleotide repeats in yeast, Mol Cell Biol, vol.23, pp.1349-1357, 2003.

A. Plessis, A. Perrin, J. E. Haber, and B. Dujon, Site-specific recombination determined by I-Sce I, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus, Genetics, vol.130, pp.451-460, 1992.

G. Richard and B. Dujon, Distribution and variability of trinucleotide repeats in the genome of the yeast Saccharomyces cerevisiae, Gene, vol.174, pp.165-174, 1996.

G. Richard, B. Dujon, and J. E. Haber, Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats, Mol Gen Genet, vol.261, pp.871-882, 1999.

G. Richard, C. Hennequin, A. Thierry, and B. Dujon, Trinucleotide repeats and other microsatellites in yeasts, Res Microbiol, vol.150, pp.589-602, 1999.

G. Richard, G. M. Goellner, C. T. Mcmurray, and J. E. Haber, Recombinationinduced CAG trinucleotide repeat expansions in yeast involve the MRE11/RAD50/XRS2 complex, EMBO J, vol.19, pp.2381-2390, 2000.

G. Richard, C. Cyncynatus, and B. Dujon, Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism, J. Mol. Biol, vol.326, pp.769-782, 2003.

G. Richard, A. Kerrest, and B. Dujon, Comparative genomics and molecular dynamics of DNA repeats in eukaryotes, Microbiol Mol Biol Rev, vol.72, pp.686-727, 2008.

G. Richard, D. Viterbo, V. Khanna, V. Mosbach, L. Castelain et al., Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast, PLoS ONE, vol.9, p.95611, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370694

R. Rothstein, C. Helms, and N. Rosenberg, Concerted deletions and inversions are caused by mitotic recombination between delta sequences in Saccharomyces cerevisiae, Mol Cell Biol, vol.7, pp.1198-1207, 1987.

G. Samadashwily, G. Raca, and S. M. Mirkin, Trinucleotide repeats affect DNA replication in vivo, Nat. Genet, vol.17, pp.298-304, 1997.

R. S. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, pp.19-27, 1989.

I. M. Slaymaker, L. Gao, B. Zetsche, D. A. Scott, W. X. Yan et al., Rationally engineered Cas9 nucleases with improved specificity, Science, vol.351, pp.84-88, 2016.

C. C. So, M. , and A. , DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells, PLOS Genet, vol.15, p.1008101, 2019.

F. Storici, K. Bebenek, T. A. Kunkel, D. A. Gordenin, and M. A. Resnick, RNAtemplated DNA repair, Nature, vol.447, pp.338-341, 2007.

G. R. Sutherland, E. Baker, and R. I. Richards, Fragile sites still breaking, Trends Genet, vol.14, pp.501-506, 1998.

D. Viterbo, G. Michoud, V. Mosbach, B. Dujon, R. et al., Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair, DNA Repair, vol.42, pp.94-106, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299733

D. Viterbo, A. Marchal, V. Mosbach, L. Poggi, W. Vaysse-zinkhöfer et al., A fast, sensitive and cost-effective method for nucleic acid detection using nonradioactive probes, Biol. Methods Protoc, vol.3, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02864565

A. J. Welcker, J. De-montigny, S. Potier, and J. L. Souciet, Involvement of very short DNA tandem repeats and the influence of the RAD52 gene on the occurrence of deletions in Saccharomyces cerevisiae, Genetics, vol.156, pp.549-557, 2000.

T. E. Wilson, U. Grawunder, and M. R. Lieber, Yeast DNA ligase IV mediates nonhomologous DNA end joining, Nature, vol.388, pp.495-498, 1997.

Z. Zhu, W. H. Chung, E. Y. Shim, S. E. Lee, I. et al., Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends, Cell, vol.134, pp.981-994, 2008.