S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., SPAdes: a new genome assembly algorithm and its application to single-cell sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

T. Bergholz, M. Shah, L. Burall, M. Rakic-martinez, and A. Datta, Genomic and phenotypic diversity of Listeria monocytogenes clonal complexes associated with human listeriosis, Appl. Microbiol. Biotechnol, vol.102, pp.3475-3485, 2018.

H. Bierne, C. Sabet, N. Personnic, and P. Cossart, Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes, Microbes Infect, vol.9, pp.1156-1166, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666058

R. Buchanan, L. G. Gorris, M. M. Hayman, T. C. Jackson, and R. C. Whiting, A review of Liseria monocytogenes: an udate on outbreaks, virulence, dose-response, ecology, and risk assessments, Food Control, vol.75, pp.1-13, 2017.

Y. Chalenko, E. Kalinin, V. Marchenkov, E. Sysolyatina, A. Surin et al., Phylogenetically defined isoforms of Listeria monocytogenes invasion factor InlB differently activate intracellular signaling pathways and interact with the receptor gC1q-R, Intern. J. Mol. Sci, vol.20, p.4138, 2019.

C. Charlier, É. Perrodeau, A. Leclercq, B. Cazenave, B. Pilmis et al., Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study, Lancet Infect. Dis, vol.17, issue.16, pp.30521-30528, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01475849

A. Colegiogri, I. Bruini, P. A. Di-ciccio, E. Zanardi, S. Ghidini et al., Listeria monocytogenes biofilms in the wonderland of food industry, Pathogenes, vol.6, pp.1-9, 2017.

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, M. et al., Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J. Clin. Microbiol, vol.42, pp.3819-3822, 2004.

V. Dutta, D. Elhanafi, and S. Kathariou, Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes, Appl. Environ. Microbiol, vol.79, pp.6067-6074, 2013.

M. Dzieciol, E. Schornsteiner, M. Muhterem-uyar, B. Stessl, M. Wagner et al., Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment, Intern. J. Food Microbiol, vol.223, pp.33-40, 2016.

, Scientific report on the European Union One Health 2018 zoonoses report, EFSA J, vol.17, p.5926, 2019.

T. Glebícová, I. Kolácková, R. Pantucek, and R. Karpí?ková, A novel mutation leading to a premature stop codon in inlA of Listeria monocytogenes isolated from neonatal listeriosis, New Microbiol, vol.38, pp.293-296, 2015.

T. Glebícová, M. Zobanikova, Z. Tomasticova, I. Van-walle, W. Rupitsh et al., An outbreak of listerisosis linked to turkey meat products in Czech Republic, Epidemiol. Infect, vol.146, pp.1407-1412, 2018.

I. Hein, S. Klinger, M. Dooms, G. Flekna, B. Stess et al., Stress Survival Islet 1 (SSI-1) survey in Listeria monocytogenes reveals an insert common to Listeria innocua in Sequence Type 121 L. monocytogenes strains, Appl. Environ. Microbiol, vol.77, pp.2169-2173, 2011.

. Iso, Microbiology of Food and Animal Feeding Stuffs -Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes -Part 1: Detection Method. Geneva: International Organization for Standardization, pp.11290-11291, 1996.

C. Jacquet, M. Doumith, J. I. Gordon, P. M. Martin, P. Cossart et al., A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes, J. Infect. Dis, vol.189, pp.2094-2100, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683027

A. V. Jennison, J. J. Masson, N. Fang, R. M. Graham, M. I. Bradbury et al., Analysis of the Listeria monocytogenes population structure among isolates from 1931 to 2015 in Australia, Front. Microbiol, vol.8, p.603, 2017.

K. Jolley and M. C. Maiden, BIGSdb: scalable analysis of bacterial genome variation at the population level, BMC Bioinformatics, vol.11, p.595, 2010.

R. Jonquieres, H. Bierne, J. Mengaud, and P. Cossart, The inlA gene of Listeria monocytogenes LO28 harbours a nonsense mutation resulting in release of internalin, Infect. Immun, vol.66, pp.3420-3422, 1998.

P. H. Kremer, J. A. Lees, M. M. Koopmans, B. Ferwerda, A. W. Arnds et al., Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis, Clin. Microbiol. Infect, vol.23, pp.1-265, 2017.

A. Kuch, A. Goc, K. Belkiewicz, V. Filipello, P. Ronkiewicz et al., Molecular diversity and antimicrobial susceptibility of Listeria monocytogenes isolates from invasive infections in Poland (1997-2013), Sci. Rep, vol.8, p.14562, 2018.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0, Mol. Biol. Evol, vol.33, pp.1870-1874, 2015.

M. Lebrun, J. Mengaud, H. Ohayon, F. Nato, and P. Cossart, Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells, Mol. Microbiol, vol.21, pp.579-592, 1996.

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.

A. Lingnau, E. Domann, M. Hudel, M. Bock, T. Nichterlein et al., Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by prfAdependent and -independent mechanisms, Infect. Immun, vol.63, pp.3896-3903, 1995.

S. Luth, S. Kleta, A. Dahouk, and S. , Whole genome sequencing as a typing tool for foodborne pathogenes lika Listeria monocytogenes -The way toward global harmonisation and data exchange, Trends Food Sci. Technol, vol.73, pp.67-75, 2018.

M. M. Maury, H. Bracq-dieye, L. Huang, G. Vales, M. Lavina et al., Hypervirulent Listeria monocytogenes clones' adapting to mammalian gut accounts for their association with dairy products, Nat. Commun, vol.10, p.2488, 2019.

M. M. Maury, Y. H. Tsai, C. Charlier, M. Touchon, V. Chenal-francisque et al., Uncovering Liseria monocytogenes hypervirulence by harnessine its biodiversity, Nat. Genet, vol.48, pp.308-313, 2016.

A. Moura, A. Criscuolo, H. Pouseele, M. M. Maury, A. Leclercq et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat. Microbiol, vol.2, p.16185, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01415883

A. Moura, M. Tourdjman, A. Leclercq, E. Hamelin, E. Laurent et al., Real-time Whole-Genome Sequencing for survelliance of Liseria monocytogenes, France. Emerg. Infect. Dis, vol.23, pp.1462-1470, 2017.

M. Muhterem-uyar, C. Luminita, K. H. Wagner, M. Wagner, S. Schmitz-esser et al., New aspects on Listeria monocytogenes ST5-ECVI predominance in a heavily contaminated cheese processing environment, Front. Microbiol, vol.9, p.64, 2018.

L. Muruesan, Z. Kucerova, S. Knabel, and L. Laborde, Predominance and distribution of a persistent Listeria monocytogenes clone in a commercial fresh mushroom processing environment, J. Food Prot, vol.78, 1988.

K. K. Nightingale, K. Windham, K. E. Martin, M. Yeung, and M. Wiedmann, Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA, leading to expression of truncated and secreted internalin A, and are associated with a reduced invasion phenotype for human intestinal epithelial cells, App. Environ. Microbiol, vol.71, pp.8764-8772, 2005.

D. A. Portnoy, V. Auerbuch, and I. J. Glomski, The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell mediated immunity, J. Cell Biol, vol.158, pp.409-414, 2002.

M. Ragon, T. Wirth, F. Hollandt, R. Lavenir, M. Lecuit et al., A new perspective on Listeria monocytogenes evolution, PLoS Pathog, vol.4, p.1000146, 2008.

V. Ramaswamy, V. Cresence, J. Rejitha, M. Lekshmi, K. Dharsana et al., Listeria -review of epidemiology and pathogenesis, J. Microbiol. Immunol. Infect, vol.40, pp.4-13, 2007.

P. Sacha, J. Jaworowska, D. Ojdana, P. Wieczorek, S. Czaban et al., Occurrence of the aacA4 gene among multidrug resistant strains of Pseudomonas aeruginosa isolated form bronchial secretions obtained from the Intensive Therapy Unit at University Hospital in Bialystok, Poland. Folia Histichem. Cytobiol, vol.5, pp.322-324, 2012.

K. Sobyanin, E. Sysolyatina, M. Krivozubov, Y. Chalenko, A. Karyagina et al., Naturally occurring InlB variants that support intragastric Listeria monocytogenes infection in mice, FEMS Microbiol. Lett, vol.364, p.11, 2017.

X. Su, G. Cao, J. Zhang, H. Pan, D. Zhang et al., Characterization of internalin genes in Listeria monocytogenes from food and humans, and their association with the invasion of Caco-2 cells, Gut Pathog, vol.11, p.30, 2019.

B. Swaminathan and P. Gerner-smidt, The epidemiology of human listeriosis. Microbes Infect, vol.9, pp.1236-1243, 2007.

T. T. Van, G. Moutafis, L. T. Tran, and P. J. Coloe, Antibiotic resistance in food-borne bacterial contaminants in Vietnam, Appl. Environ. Microbiol, vol.24, pp.7906-7911, 2007.

E. Wa?ecka-zacharska, K. Kosek-paszkowska, J. Bania, Z. Staroniewicz, M. Bednarski et al., Invasiveness of Listeria monocytogenes strains isolated from animals in Poland, Pol. J. Vet. Sci, vol.18, pp.697-702, 2015.

E. Zaytseva, S. Ermolaeva, and G. P. Somov, Low genetic diversity and epidemiological significance of Listeria monocytogenes isolated from wild animals in the far east of Russia, Infect. Genet. Evol, vol.7, pp.736-742, 2007.