J. P. Mizgerd, Acute lower respiratory tract infection, N Engl J Med, vol.358, pp.716-727, 2008.

T. R. Martin and C. W. Frevert, Innate immunity in the lungs, Proc Am Thorac Soc, vol.2, pp.403-411, 2005.

G. W. Lau, D. J. Hassett, and B. E. Britigan, Modulation of lung epithelial functions by Pseudomonas aeruginosa, Trends Microbiol, vol.13, pp.389-397, 2005.

R. Bals and P. S. Hiemstra, Innate immunity in the lung: how epithelial cells fight against respiratory pathogens, Eur Respir J, vol.23, pp.327-333, 2004.

C. A. Janeway and R. Medzhitov, Innate immune recognition, Annu Rev Immunol, vol.20, pp.197-216, 2002.

R. Ramphal, V. Balloy, J. Jyot, A. Verma, and M. Si-tahar, Control of Pseudomonas aeruginosa in the lung requires the recognition of either lipopolysaccharide or flagellin, J Immunol, vol.181, pp.586-592, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00277620

E. Raoust, V. Balloy, I. Garcia-verdugo, L. Touqui, and R. Ramphal, Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLRdependent signaling in murine alveolar macrophages and airway epithelial cells, PLoS One, vol.4, p.7259, 2009.

V. Balloy, A. Verma, S. Kuravi, M. Si-tahar, and M. Chignard, The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa, J Infect Dis, vol.196, pp.289-296, 2007.

D. Descamps, L. Gars, M. Balloy, V. Barbier, D. Maschalidi et al., Tolllike receptor 5 (TLR5), IL-1beta secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing, Proc Natl Acad Sci U S A, vol.109, pp.1619-1624, 2012.

E. Latz, A. Schoenemeyer, A. Visintin, K. A. Fitzgerald, and B. G. Monks, TLR9 signals after translocating from the ER to CpG DNA in the lysosome, Nat Immunol, vol.5, pp.190-198, 2004.

H. Hemmi and S. Akira, TLR signalling and the function of dendritic cells, Chem Immunol Allergy, vol.86, pp.120-135, 2005.

F. E. Sepulveda, S. Maschalidi, R. Colisson, L. Heslop, and C. Ghirelli, Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells, Immunity, vol.31, pp.737-748, 2009.

K. Loak, D. N. Li, B. Manoury, J. Billson, and F. Morton, Novel cellpermeable acyloxymethylketone inhibitors of asparaginyl endopeptidase, Biol Chem, vol.384, pp.1239-1246, 2003.

A. Verma, S. K. Arora, S. K. Kuravi, and R. Ramphal, Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response, Infect Immun, vol.73, pp.8237-8246, 2005.

H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, and S. Sato, A Toll-like receptor recognizes bacterial DNA, Nature, vol.408, pp.740-745, 2000.

P. Kleinbongard, T. Rassaf, A. Dejam, S. Kerber, and M. Kelm, Griess method for nitrite measurement of aqueous and protein-containing samples, Methods Enzymol, vol.359, pp.158-168, 2002.

F. Ben-mohamed, I. Garcia-verdugo, M. Medina, V. Balloy, and M. Chignard, A crucial role of Flagellin in the induction of airway mucus production by Pseudomonas aeruginosa, PLoS One, vol.7, p.39888, 2012.

F. C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nat Rev Microbiol, vol.2, pp.820-832, 2004.

M. C. Assis, C. Freitas, A. M. Saliba, A. P. Dac, and T. A. Simao, Upregulation of Fas expression by Pseudomonas aeruginosa-infected endothelial cells depends on modulation of iNOS and enhanced production of NO induced by bacterial type III secreted proteins, Int J Mol Med, vol.18, pp.355-363, 2006.

P. V. Kasperkovitz, N. S. Khan, J. M. Tam, M. K. Mansour, and P. J. Davids, Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae, Infect Immun, vol.79, pp.4858-4867, 2011.

U. Bhan, N. W. Lukacs, J. J. Osterholzer, M. W. Newstead, and X. Zeng, TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells, J Immunol, vol.179, pp.3937-3946, 2007.

U. Bhan, M. N. Ballinger, X. Zeng, M. J. Newstead, and M. D. Cornicelli, Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram negative bacterial pneumonia, PLoS One, vol.5, p.9896, 2010.

B. Albiger, S. Dahlberg, A. Sandgren, F. Wartha, and K. Beiter, Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection, Cell Microbiol, vol.9, pp.633-644, 2007.

J. Labaer, Q. Qiu, A. Anumanthan, W. Mar, and D. Zuo, The Pseudomonas aeruginosa PA01 gene collection, Genome Res, vol.14, pp.2190-2200, 2004.

M. R. Gwinn and V. Vallyathan, Respiratory burst: role in signal transduction in alveolar macrophages, J Toxicol Environ Health B Crit Rev, vol.9, pp.27-39, 2006.

Y. Hiramatsu, T. Satho, K. Irie, S. Shiimura, and T. Okuno, Differences in TLR9-dependent inhibitory effects of H(2)O(2)-induced IL-8 secretion and NFkappa B/I kappa B-alpha system activation by genomic DNA from five Lactobacillus species, Microbes Infect, vol.15, pp.96-104, 2013.

C. Sodhi, R. Levy, R. Gill, M. D. Neal, and W. Richardson, DNA attenuates enterocyte Toll-like receptor 4-mediated intestinal mucosal injury after remote trauma, Am J Physiol Gastrointest Liver Physiol, vol.300, pp.862-873, 2011.

J. Lee, J. H. Mo, K. Katakura, I. Alkalay, and A. N. Rucker, Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells, Nat Cell Biol, vol.8, pp.1327-1336, 2006.

Z. M. Bamboat, V. P. Balachandran, L. M. Ocuin, H. Obaid, and G. Plitas, Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury, Hepatology, vol.51, pp.621-632, 2009.

S. Kwon and S. C. George, Synergistic cytokine-induced nitric oxide production in human alveolar epithelial cells, Nitric Oxide, vol.3, pp.348-357, 1999.

F. C. Fang, Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity, J Clin Invest, vol.99, pp.2818-2825, 1997.

J. R. Parratt, Nitric oxide in sepsis and endotoxaemia, J Antimicrob Chemother, vol.41, pp.31-39, 1998.

K. E. Darling and T. J. Evans, Effects of nitric oxide on Pseudomonas aeruginosa infection of epithelial cells from a human respiratory cell line derived from a patient with cystic fibrosis, Infect Immun, vol.71, pp.2341-2349, 2003.

Q. W. Xie, Y. Kashiwabara, and C. Nathan, Role of transcription factor NFkappa B/Rel in induction of nitric oxide synthase, J Biol Chem, vol.269, pp.4705-4708, 1994.

B. S. Taylor, M. E. Vera, R. W. Ganster, Q. Wang, and R. A. Shapiro, Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene, J Biol Chem, vol.273, pp.15148-15156, 1998.

S. V. Spitsin, H. Koprowski, and F. H. Michaels, Characterization and functional analysis of the human inducible nitric oxide synthase gene promoter, Mol Med, vol.2, pp.226-235, 1996.