A. Kornberg and T. Baker, DNA replication, 1992.

D. D. Leipe, L. Aravind, and E. V. Koonin, Did DNA replication evolve twice independently?, Nucleic Acids Res, vol.27, issue.17, pp.3389-401, 1999.

J. R. Brown and W. F. Doolittle, Archaea and the prokaryote-to-eukaryote transition, Microbiol Mol Biol Rev, vol.61, issue.4, pp.456-502, 1997.

E. V. Koonin, Comparative genomics, minimal gene-sets and the last universal common ancestor, Nat Rev Microbiol, vol.1, pp.127-163, 2003.

P. Forterre, Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain, Proc Natl Acad Sci, vol.103, issue.10, pp.3669-74, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00022131

P. M. Burgers, E. V. Koonin, E. Bruford, L. Blanco, K. C. Burtis et al., Eukaryotic DNA polymerases: proposal for a revised nomenclature, J Biol Chem, vol.276, issue.47, pp.43487-90, 2001.

Y. I. Pavlov, P. V. Shcherbakova, and I. B. Rogozin, Roles of DNA polymerases in replication, repair, and recombination in eukaryotes, Int Rev Cytol, vol.255, pp.41-132, 2006.

P. Raia, M. Delarue, and L. Sauguet, An updated structural classification of replicative DNA polymerases, Biochem Soc Trans, vol.47, issue.1, pp.239-288, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02170323

E. V. Koonin, Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases, Biol Direct, vol.1, p.39, 2006.

S. S. Abby, M. Melcher, M. Kerou, M. Krupovic, M. Stieglmeier et al., Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome, Front Microbiol, vol.9, p.28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01702026

A. Daebeler, C. W. Herbold, J. Vierheilig, C. J. Sedlacek, P. Pjevac et al., Cultivation and genomic analysis of "Candidatus Nitrosocaldus islandicus," an obligately thermophilic, ammonia-oxidizing Thaumarchaeon from a hot spring biofilm in Graendalur Valley, Iceland. Front Microbiol, vol.9, p.193, 2018.

K. S. Makarova, M. Krupovic, and E. V. Koonin, Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery, Front Microbiol, vol.5, p.354, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01977396

I. K. Cann and Y. Ishino, Archaeal DNA replication: identifying the pieces to solve a puzzle, Genetics, vol.152, issue.4, pp.1249-67, 1999.

I. Cann, K. Komori, H. Toh, S. Kanai, and Y. Ishino, A heterodimeric DNA polymerase: evidence that members of euryarchaeota possess a distinct DNA polymerase, Proc Natl Acad Sci, vol.95, issue.24, pp.14250-14255, 1998.

T. Kushida, I. Narumi, S. Ishino, Y. Ishino, S. Fujiwara et al., Pol B, a family B DNA polymerase, in Thermococcus kodakarensis is important for DNA repair, but not DNA replication, Microbes Environ, vol.34, issue.3, pp.316-342, 2019.

L. Cubonova, T. Richardson, B. W. Burkhart, Z. Kelman, B. A. Connolly et al., Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis, J Bacteriol, vol.195, issue.10, pp.2322-2330, 2013.

Z. Li, T. J. Santangelo, L. Cubonova, J. N. Reeve, and Z. Kelman, Affinity purification of an archaeal DNA replication protein network, MBio, vol.1, issue.5, pp.221-231, 2010.

F. Sarmiento, J. Mrazek, and W. B. Whitman, Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis, Proc Natl Acad Sci U S A, vol.110, issue.12, pp.4726-4757, 2013.

L. Sauguet, P. Raia, G. Henneke, and M. Delarue, Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by Xray crystallography, Nat Commun, vol.7, p.12227, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01389383

P. Raia, M. Carroni, E. Henry, G. Pehau-arnaudet, S. Brule et al., Structure of the DP1-DP2 PolD complex bound with DNA and its implications for the evolutionary history of DNA and RNA polymerases, PLoS Biol, vol.17, issue.1, p.3000122, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02057758

L. Sauguet, The extended "two-barrel" polymerases superfamily: structure, function and evolution, J Mol Biol, vol.431, issue.20, pp.4167-83, 2019.

F. Werner and D. Grohmann, Evolution of multisubunit RNA polymerases in the three domains of life, Nat Rev Microbiol, vol.9, issue.2, pp.85-98, 2011.

T. Fouqueau, F. Blombach, and F. Werner, Evolutionary origins of two-barrel RNA polymerases and site-specific transcription initiation, Annu Rev Microbiol, vol.71, pp.331-379, 2017.

W. J. Lane and S. A. Darst, Molecular evolution of multisubunit RNA polymerases: structural analysis, J Mol Biol, vol.395, issue.4, pp.686-704, 2009.

W. J. Lane and S. A. Darst, Molecular evolution of multisubunit RNA polymerases: sequence analysis, J Mol Biol, vol.395, issue.4, pp.671-85, 2010.

L. M. Iyer, E. V. Koonin, and L. Aravind, Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer, Gene, vol.335, pp.73-88, 2004.

L. M. Iyer, E. V. Koonin, and L. Aravind, Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNAdependent RNA polymerases and the origin of RNA polymerases, BMC Struct Biol, vol.3, p.1, 2003.

L. M. Iyer, S. Balaji, E. V. Koonin, and L. Aravind, Evolutionary genomics of nucleocytoplasmic large DNA viruses, Virus Res, vol.117, issue.1, pp.156-84, 2006.

N. Yutin and E. V. Koonin, Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes, Virol J, vol.9, p.161, 2012.

A. L. Passarelli and L. A. Guarino, Baculovirus late and very late gene regulation, Curr Drug Targets, vol.8, issue.10, pp.1103-1118, 2007.

H. S. Hillen, J. Bartuli, C. Grimm, C. Dienemann, K. Bedenk et al., Structural basis of poxvirus transcription: transcribing and capping Vaccinia complexes, Cell, vol.179, issue.7, pp.1525-1561, 2019.

C. Grimm, H. S. Hillen, K. Bedenk, J. Bartuli, S. Neyer et al., Structural basis of poxvirus transcription: Vaccinia RNA polymerase complexes, Cell, vol.179, issue.7, pp.1537-50, 2019.

Z. Berdygulova, L. F. Westblade, L. Florens, E. V. Koonin, B. T. Chait et al., Temporal regulation of gene expression of the Thermus thermophilus bacteriophage P23-45, J Mol Biol, vol.405, issue.1, pp.125-167, 2011.

D. Forrest, Unusual relatives of the multisubunit RNA polymerase, Biochem Soc Trans, vol.47, issue.1, pp.219-247, 2019.

P. S. Salgado, M. R. Koivunen, E. V. Makeyev, D. H. Bamford, D. I. Stuart et al., The structure of an RNAi polymerase links RNA silencing and transcription, PLoS Biol, vol.4, issue.12, p.434, 2006.

A. V. Drobysheva, S. A. Panafidina, M. V. Kolesnik, E. I. Klimuk, L. Minakhin et al., Structure and function of virion RNA polymerase of crAss-like phage

M. Sykora, M. Pospisek, J. Novak, S. Mrvova, L. Krasny et al., Transcription apparatus of the yeast virus-like elements: architecture, function, and evolutionary origin, PLoS Pathog, vol.14, issue.10, p.1007377, 2018.

I. B. Rogozin, K. S. Makarova, Y. I. Pavlov, and E. V. Koonin, A highly conserved family of inactivated archaeal B family DNA polymerases, Biol Direct, vol.3, p.32, 2008.

J. Yan, T. R. Beattie, A. L. Rojas, K. Schermerhorn, T. Gristwood et al., Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme, Nat Commun, vol.8, p.15075, 2017.

T. H. Tahirov, K. S. Makarova, I. B. Rogozin, Y. I. Pavlov, and E. V. Koonin, Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ? and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors, Biol Direct, vol.4, p.11, 2009.

D. Kazlauskas, M. Krupovic, and C. Venclovas, The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes, Nucleic Acids Res, vol.44, issue.10, pp.4551-64, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01977379

M. Redrejo-rodriguez, C. D. Ordonez, M. Berjon-otero, J. Moreno-gonzalez, C. Aparicio-maldonado et al., Primer-independent DNA synthesis by a family B DNA polymerase from self-replicating mobile genetic elements, Cell Rep, vol.21, issue.6, pp.1574-87, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01977354

M. Krupovic and E. V. Koonin, Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution, Nat Rev Microbiol, vol.13, issue.2, pp.105-120, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01977391

T. Dapa, S. Fleurier, M. F. Bredeche, and I. Matic, The SOS and RpoS regulons contribute to bacterial cell robustness to genotoxic stress by synergistically regulating DNA polymerase Pol II, Genetics, vol.206, issue.3, pp.1349-60, 2017.

M. Krupovic, V. V. Dolja, and E. V. Koonin, Origin of viruses: primordial replicators recruiting capsids from hosts, Nat Rev Microbiol, vol.17, issue.7, pp.449-58, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02557191

Y. Shen, X. F. Tang, E. Matsui, and I. Matsui, Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii, Biochem Soc Trans, vol.32, issue.2, pp.245-254, 2004.

R. J. Bauer, I. D. Wolff, X. Zuo, H. K. Lin, and M. A. Trakselis, Assembly and distributive action of an archaeal DNA polymerase holoenzyme, J Mol Biol, vol.425, issue.23, pp.4820-4856, 2013.

X. Xu, C. Yan, B. R. Kossmann, and I. Ivanov, Secondary interaction interfaces with PCNA control conformational switching of DNA polymerase PolB from polymerization to editing, J Phys Chem B, vol.120, issue.33, pp.8379-88, 2016.

K. Tori, M. Kimizu, S. Ishino, and Y. Ishino, DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs, J Bacteriol, vol.189, issue.15, pp.5652-5659, 2007.

Y. Kuba, S. Ishino, T. Yamagami, M. Tokuhara, T. Kanai et al., Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis, Genes Cells, vol.17, issue.11, pp.923-960, 2012.

B. Castrec, C. Rouillon, G. Henneke, D. Flament, J. Querellou et al., Binding to PCNA in euryarchaeal DNA replication requires two PIP motifs for DNA polymerase D and one PIP motif for DNA polymerase B, J Mol Biol, vol.394, issue.2, pp.209-227, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00609928

C. Madru, G. Henneke, P. Raia, I. Hugonneau-beaufet, G. Pehau-arnaudet et al., Structural basis for the increased processivity of D-family DNA polymerases in complex with PCNA, Nat Commun, vol.11, issue.1, p.1591, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02557218

L. Aravind and E. V. Koonin, DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history, Nucleic Acids Res, vol.27, issue.7, pp.1609-1627, 1999.

S. Bailey, R. A. Wing, and T. A. Steitz, The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases, Cell, vol.126, issue.5, pp.893-904, 2006.

S. A. Morley, A. Peralta-castro, L. G. Brieba, J. Miller, K. L. Ong et al., Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B, BMC Plant Biol, vol.19, issue.1, p.241, 2019.

D. J. Oldenburg and A. J. Bendich, DNA maintenance in plastids and mitochondria of plants, Front Plant Sci, vol.6, p.883, 2015.

S. J. Lee and C. C. Richardson, Choreography of bacteriophage T7 DNA replication, Curr Opin Chem Biol, vol.15, issue.5, pp.580-586, 2011.

L. M. Iyer, S. Abhiman, and L. Aravind, A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases, Biol Direct, vol.3, p.39, 2008.

G. M. Cheetham and T. A. Steitz, Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases, Curr Opin Struct Biol, vol.10, issue.1, pp.117-140, 2000.

K. Schwinghammer, A. C. Cheung, Y. I. Morozov, K. Agaronyan, D. Temiakov et al., Structure of human mitochondrial RNA polymerase elongation complex, Nat Struct Mol Biol, vol.20, issue.11, pp.1298-303, 2013.

B. F. Lang, G. Burger, O. Kelly, C. J. Cedergren, R. Golding et al., An ancestral mitochondrial DNA resembling a eubacterial genome in miniature, Nature, vol.387, issue.6632, pp.493-500, 1997.

P. G. Higgs and N. Lehman, The RNA world: molecular cooperation at the origins of life, Nat Rev Genet, vol.16, issue.1, pp.7-17, 2015.

G. F. Joyce, The antiquity of RNA-based evolution, Nature, vol.418, issue.6894, pp.214-235, 2002.

P. Forterre, The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells, Biochimie, vol.87, issue.9, pp.793-803, 2005.

Y. I. Wolf and E. V. Koonin, On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization, Biol Direct, vol.2, p.14, 2007.

Y. Wang, J. Qu, J. S. Wallace, A. J. Wu, J. Li et al., A land plantspecific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA polymerase II, Plant Cell, vol.28, issue.5, pp.1094-107, 2016.

B. Ding, Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs, Wiley Interdiscip Rev RNA, vol.1, issue.3, pp.362-75, 2010.

L. E. Modahl, T. B. Macnaughton, N. Zhu, D. L. Johnson, and M. M. Lai, RNA-dependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases, Mol Cell Biol, vol.20, issue.16, pp.6030-6039, 2000.

S. Takahashi, H. Okura, and N. Sugimoto, Bisubstrate function of RNA polymerases triggered by molecular crowding conditions, Biochemistry, vol.58, issue.8, pp.1081-93, 2019.

M. Coles, M. Hulko, S. Djuranovic, V. Truffault, K. Koretke et al., Common evolutionary origin of swapped-hairpin and double-psi beta barrels, Structure, vol.14, issue.10, pp.1489-98, 2006.

L. Aravind and E. V. Koonin, Phosphoesterase domains associated with DNA polymerases of diverse origins, Nucleic Acids Res, vol.26, issue.16, pp.3746-52, 1998.

L. M. Iyer and L. Aravind, Insights from the architecture of the bacterial transcription apparatus, J Struct Biol, vol.179, issue.3, pp.299-319, 2012.

M. Falkenberg, N. G. Larsson, and C. M. Gustafsson, DNA replication and transcription in mammalian mitochondria, Annu Rev Biochem, vol.76, pp.679-99, 2007.

J. Filee and P. Forterre, Viral proteins functioning in organelles: a cryptic origin?, Trends Microbiol, vol.13, issue.11, pp.510-513, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079694

L. Menendez-arias and R. Andino, Viral polymerases, Virus Res, vol.234, pp.1-3, 2017.

M. Salas and M. De-vega, Protein-primed replication of bacteriophage Phi29 DNA, Enzymes, vol.39, pp.137-67, 2016.

L. M. Iyer, E. V. Koonin, D. D. Leipe, and L. Aravind, Origin and evolution of the archaeoeukaryotic primase superfamily and related palm-domain proteins: structural insights and new members, Nucleic Acids Res, vol.33, issue.12, pp.3875-96, 2005.

D. Kazlauskas, G. Sezonov, N. Charpin, C. Venclovas, P. Forterre et al., Novel families of archaeo-eukaryotic primases associated with mobile genetic elements of Bacteria and Archaea, J Mol Biol, vol.430, issue.5, pp.737-50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01774510

B. Zhu, L. Wang, H. Mitsunobu, X. Lu, A. J. Hernandez et al., Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers, Proc Natl Acad Sci, vol.114, issue.12, pp.2310-2318, 2017.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations