Skip to Main content Skip to Navigation
Book sections

Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system

Abstract : Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Complete list of metadata
Contributor : Bénédicte Benedic Connect in order to contact the contributor
Submitted on : Thursday, June 4, 2020 - 2:45:08 PM
Last modification on : Tuesday, January 4, 2022 - 6:36:53 AM




Corentin Baussier, Soufyan Fakroun, Corinne Aubert, Sarah Dubrac, Pierre Mandin, et al.. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Elsevier. Advances in Microbial Physiology, 76, pp.1-39, 2020, 978-0-12-820746-8. ⟨10.1016/bs.ampbs.2020.01.001⟩. ⟨pasteur-02775695⟩



Les métriques sont temporairement indisponibles