E. Gould, J. Pettersson, S. Higgs, R. Charrel, and X. De-lamballerie, Emerging arboviruses: Why today? One Health, vol.4, pp.1-13, 2017.

S. C. Weaver and W. K. Reisen, Present and future arboviral threats, Antiviral Res, vol.85, pp.328-345, 2010.

S. Flasche, A. Wilder-smith, J. Hombach, and P. G. Smith, Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines, Wellcome Open Res, 2019.

A. Wilder-smith, S. Flasche, and P. G. Smith, Vaccine-attributable severe dengue in the Philippines, Lancet, vol.394, pp.2151-2152, 2019.

A. M. Powers and C. H. Logue, Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus, J. Gen. Virol, vol.88, pp.2363-2377, 2007.

K. A. Tsetsarkin, D. L. Vanlandingham, C. E. Mcgee, and S. Higgs, A single mutation in chikungunya virus affects vector specificity and epidemic potential, PLoS Pathog, 2007.

M. Vazeille, S. Moutailler, D. Coudrier, C. Rousseaux, H. Khun et al., Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus, PLoS ONE, vol.2, 1168.
URL : https://hal.archives-ouvertes.fr/hal-00196860

J. Adhami and P. Reiter, Introduction and establishment of Aedes (Stegomyia) albopictus skuse (Diptera: Culicidae) in Albania, J. Am. Mosq. Control Assoc, vol.14, pp.340-343, 1998.

E. Delisle, C. Rousseau, B. Broche, I. Leparc-goffart, G. L'ambert et al., Euro Surveill, vol.20, 2014.

M. Grandadam, V. Caro, S. Plumet, J. M. Thiberge, Y. Souares et al., Leparc-Goffart, I.; et al. Chikungunya virus, southeastern France, Emerg. Infect. Dis, vol.17, pp.910-913, 2011.

R. Angelini, A. C. Finarelli, P. Angelini, C. Po, K. Petropulacos et al., An outbreak of chikungunya fever in the province of, Euro Surveill, vol.12, 2007.

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

A. L. St-john and A. P. Rathore, Adaptive immune responses to primary and secondary dengue virus infections, Nat. Rev. Immunol, vol.19, pp.218-230, 2019.

M. G. Guzman, M. Alvarez, and S. B. Halstead, Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection, Arch. Virol, vol.158, pp.1445-1459, 2013.

S. C. Kliks, A. Nisalak, W. E. Brandt, L. Wahl, and D. S. Burke, Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever, Am. J. Trop Med. Hyg, vol.40, pp.444-451, 1989.

F. M. Shearer, J. Longbottom, A. J. Browne, D. M. Pigott, O. J. Brady et al., Existing and potential infection risk zones of yellow fever worldwide: A modelling analysis, Lancet Glob. Health, vol.6, pp.270-278, 2018.

N. I. Silva, L. Sacchetto, I. M. De-rezende, G. S. Trindade, A. D. Labeaud et al., Recent sylvatic yellow fever virus transmission in Brazil: The news from an old disease, Virol. J, vol.17, issue.9, 2020.

, WHO Expert Committee on Biological Standardization. Forty-fifth report. World Health Organ. Tech. Rep. Ser, vol.858, pp.1-101, 1995.

P. Schlagenhauf and L. H. Chen, Yellow Fever importation to China -a failure of pre-and post-travel control systems?, Int. J. Infect. Dis, vol.60, pp.91-92, 2017.

A. Wilder-smith, V. Lee, and D. J. Gubler, Yellow fever: Is Asia prepared for an epidemic?, Lancet Infect. Dis, vol.19, pp.241-242, 2019.

S. Wasserman, P. A. Tambyah, and P. L. Lim, Yellow fever cases in Asia: Primed for an epidemic, Int. J. Infect. Dis, vol.48, pp.98-103, 2016.

M. R. Duffy, T. H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool et al., Zika virus outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med, vol.360, pp.2536-2543, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00734543

D. Musso, H. Bossin, H. P. Mallet, M. Besnard, J. Broult et al., Zika virus in French Polynesia 2013-14: Anatomy of a completed outbreak, Lancet Infect. Dis, vol.18, pp.172-182, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789246

N. R. Faria, R. D. Azevedo, M. U. Kraemer, R. Souza, M. S. Cunha et al., Zika virus in the Americas: Early epidemiological and genetic findings, vol.352, pp.345-349, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02641629

E. S. Paixao, W. Y. Leong, L. C. Rodrigues, and A. Wilder-smith, Asymptomatic Prenatal Zika Virus Infection and Congenital Zika Syndrome. Open Forum, Infect. Dis, vol.5, p.73, 2018.

S. M. Moghadas, A. Shoukat, A. L. Espindola, R. S. Pereira, F. Abdirizak et al., Asymptomatic Transmission and the Dynamics of Zika Infection, Sci. Rep, vol.7, p.5829, 2017.

M. U. Kraemer, R. C. Reiner, . Jr, O. J. Brady, J. P. Messina et al., Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus, Nat. Microbiol, vol.4, pp.404-414, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02067318

C. R. Anderson, W. G. Downs, G. H. Wattley, N. W. Ahin, and A. A. Reese, Mayaro virus: A new human disease agent. II. Isolation from blood of patients in Trinidad, B.W.I. Am, J. Trop. Med. Hyg, vol.6, pp.1012-1016, 1957.

D. Engel, H. Jost, M. Wink, J. Borstler, S. Bosch et al., Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa, vol.7, 2016.

Y. Acosta-ampudia, D. M. Monsalve, Y. Rodriguez, Y. Pacheco, J. M. Anaya et al., Mayaro: An emerging viral threat? Emerg, Microbes Infect, vol.7, p.163, 2018.

B. Nikolay, M. Diallo, C. S. Boye, and A. A. Sall, Usutu virus in Africa. Vector Borne Zoonotic Dis, vol.11, pp.1417-1423, 2011.

U. Ashraf, J. Ye, X. Ruan, S. Wan, B. Zhu et al., Usutu virus: An emerging flavivirus in Europe, vol.7, pp.219-238, 2015.

M. U. Kraemer, M. E. Sinka, K. A. Duda, A. Q. Mylne, F. M. Shearer et al., The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife, 2015.

L. D. Kramer and G. D. Ebel, Dynamics of flavivirus infection in mosquitoes, Adv. Virus Res, vol.60, pp.187-232, 2003.

S. Sim, N. Jupatanakul, and G. Dimopoulos, Mosquito immunity against arboviruses, Viruses, vol.6, pp.4479-4504, 2014.

C. D. Blair, Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission, Future Microbiol, vol.6, pp.265-277, 2011.

E. I. Patterson, K. Khanipov, M. M. Rojas, T. F. Kautz, D. Rockx-brouwer et al., Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity, Virus Evol, 2018.

N. D. Grubaugh, J. Weger-lucarelli, R. A. Murrieta, J. R. Fauver, S. M. Garcia-luna et al., Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching, Cell Host Microbe, vol.19, pp.481-492, 2016.

L. L. Coffey, N. Forrester, K. Tsetsarkin, N. Vasilakis, and S. C. Weaver, Factors shaping the adaptive landscape for arboviruses: Implications for the emergence of disease, Future Microbiol, vol.8, pp.155-176, 2013.

H. A. Flores and S. L. O'neill, Controlling vector-borne diseases by releasing modified mosquitoes, Nat. Rev. Microbiol, vol.16, pp.508-518, 2018.

J. Fang, Ecology: A world without mosquitoes, Nature, vol.466, pp.432-434, 2010.

G. R. Ostera and L. O. Gostin, Biosafety concerns involving genetically modified mosquitoes to combat malaria and dengue in developing countries, JAMA, vol.305, pp.930-931, 2011.

R. Carballar-lejarazu and A. A. James, Population modification of Anopheline species to control malaria transmission, vol.111, pp.424-435, 2017.

J. Champer, A. Buchman, and O. S. Akbari, Cheating evolution: Engineering gene drives to manipulate the fate of wild populations, Nat. Rev. Genet, vol.17, pp.146-159, 2016.

A. W. Franz, I. Sanchez-vargas, Z. N. Adelman, C. D. Blair, B. J. Beaty et al., Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti, Proc. Natl. Acad. Sci, vol.103, pp.4198-4203, 2006.

G. Mathur, I. Sanchez-vargas, D. Alvarez, K. E. Olson, O. Marinotti et al., Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti, Insect Mol. Biol, vol.19, pp.753-763, 2010.

P. S. Yen, A. James, J. C. Li, C. H. Chen, and A. B. Failloux, Synthetic miRNAs induce dual arboviral-resistance phenotypes in the vector mosquito Aedes aegypti, Commun. Biol, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01718640

H. Ramyasoma, R. S. Dassanayake, M. Hapugoda, M. L. Capurro, and Y. I. Silva-gunawardene, Multiple dengue virus serotypes resistant transgenic Aedes aegypti fitness evaluated under laboratory conditions, RNA Biol, vol.2020, pp.1-21

A. Buchman, S. Gamez, M. Li, I. Antoshechkin, H. H. Li et al., Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs, Proc. Natl. Acad. Sci, vol.116, pp.3656-3661, 2019.

P. Mishra, C. Furey, V. Balaraman, and M. J. Fraser, Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes, Viruses, vol.8, p.163, 2016.

J. R. Carter, J. H. Keith, T. S. Fraser, J. L. Dawson, C. A. Kucharski et al., Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain, Virol. J, vol.11, issue.111, 2014.

X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti, Proc. Natl. Acad. Sci, vol.109, pp.23-31, 2012.

A. Buchman, S. Gamez, M. Li, I. Antoshechkin, H. H. Li et al., Broad dengue neutralization in mosquitoes expressing an engineered antibody, PLoS Pathog, vol.16, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02653696

P. N. Okorie, J. M. Marshall, O. M. Akpa, and O. G. Ademowo, Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria, Malar J, vol.13, 2014.

L. Lambrechts and M. C. Saleh, Manipulating Mosquito Tolerance for Arbovirus Control, Cell Host Microbe, vol.26, pp.309-313, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02863592

C. M. Cirimotich, J. L. Ramirez, and G. Dimopoulos, Native microbiota shape insect vector competence for human pathogens, Cell Host Microbe, vol.10, pp.307-310, 2011.

G. Minard, F. H. Tran, F. N. Raharimalala, E. Hellard, P. Ravelonandro et al., Valiente Moro, C. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar, FEMS Microbiol. Ecol, vol.83, pp.63-73, 2013.

K. Bourtzis, S. L. Dobson, Z. Xi, J. L. Rasgon, M. Calvitti et al., Harnessing mosquito-Wolbachia symbiosis for vector and disease control, Acta Trop, vol.132, pp.150-163, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02522213

H. L. Dutra, M. N. Rocha, F. B. Dias, S. B. Mansur, E. P. Caragata et al., Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes, Cell Host Microbe, vol.19, pp.771-774, 2016.

S. Masui, S. Kamoda, T. Sasaki, and H. Ishikawa, Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods, J. Mol. Evol, vol.51, pp.491-497, 2000.

M. Hertig and S. B. Wolbach, Studies on Rickettsia-Like Micro-Organisms in Insects, J. Med. Res, vol.44, pp.329-374, 1924.

J. H. Werren, L. Baldo, M. E. Clark, and . Wolbachia, Master manipulators of invertebrate biology, Nat. Rev. Microbiol, vol.6, pp.741-751, 2008.

F. Landmann, The Wolbachia Endosymbionts. Microbiol. Spectr, vol.7, 2019.

K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, How many species are infected with Wolbachia?-A statistical analysis of current data, FEMS Microbiol. Lett, vol.281, pp.215-220, 2008.

M. Bonneau, F. Landmann, P. Labbe, F. Justy, M. Weill et al., The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity, PLoS Pathog, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938013

J. F. Beckmann, J. A. Ronau, and M. Hochstrasser, A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nat. Microbiol, 2017.

J. E. Pietri, H. Debruhl, and W. Sullivan, The rich somatic life of Wolbachia, vol.5, pp.923-936, 2016.

S. E. Osborne, Y. S. Leong, S. L. O'neill, and K. N. Johnson, Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans, PLoS Pathog, vol.5, 2009.

L. Teixeira, A. Ferreira, and M. Ashburner, The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster, PLoS Biol, vol.6, 2008.

L. A. Moreira, I. Iturbe-ormaetxe, J. A. Jeffery, G. Lu, A. T. Pyke et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, vol.139, pp.1268-1278, 2009.

L. M. Hedges, J. C. Brownlie, S. L. O'neill, and K. N. Johnson, Wolbachia and virus protection in insects, Science, vol.322, 2008.

J. A. Souza-neto, J. R. Powell, and M. Bonizzoni, Aedes aegypti vector competence studies: A review, Infect. Genet. Evol, vol.67, pp.191-209, 2019.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, pp.454-457, 2011.

K. Zouache, D. Voronin, V. Tran-van, L. Mousson, A. B. Failloux et al., Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus, PLoS ONE, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01681435

P. Lu, G. Bian, X. Pan, and Z. Xi, Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells, PLoS Negl. Trop. Dis, vol.6, 1754.

J. Martinez, S. Ok, S. Smith, K. Snoeck, J. P. Day et al., Should Symbionts Be Nice or Selfish? Antiviral Effects of Wolbachia Are Costly but Reproductive Parasitism Is Not, PLoS Pathog, vol.11, 2015.

J. Martinez, G. Bruner-montero, R. Arunkumar, S. C. Smith, J. P. Day et al., Virus evolution in Wolbachia-infected Drosophila, Proc. Biol. Sci, vol.286, 2019.

Z. Kambris, P. E. Cook, H. K. Phuc, and S. P. Sinkins, Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes, Science, vol.326, pp.134-136, 2009.

Z. Kambris, A. M. Blagborough, S. B. Pinto, M. S. Blagrove, H. C. Godfray et al., Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae, PLoS Pathog, vol.6, 2010.

J. B. Silva, D. Magalhaes-alves, V. Bottino-rojas, T. N. Pereira, M. H. Sorgine et al., Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae), PLoS ONE, vol.12, 2017.

G. Zhang, M. Hussain, S. L. O'neill, and S. Asgari, Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti, Proc. Natl. Acad. Sci, vol.110, pp.10276-10281, 2013.

J. G. Mayoral, K. Etebari, M. Hussain, A. A. Khromykh, and S. Asgari, Wolbachia infection modifies the profile, shuttling and structure of microRNAs in a mosquito cell line, PLoS ONE, vol.9, p.96107, 2014.

A. Slonchak, M. Hussain, S. Torres, S. Asgari, and A. A. Khromykh, Expression of mosquito microRNA Aae-miR-2940-5p is downregulated in response to West Nile virus infection to restrict viral replication, J. Virol, vol.88, pp.8457-8467, 2014.

S. M. Rainey, J. Martinez, M. Mcfarlane, P. Juneja, P. Sarkies et al., Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways, PLoS Pathog, vol.12, 2016.

V. Geoghegan, K. Stainton, S. M. Rainey, T. H. Ant, A. A. Dowle et al., Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells, Nat. Commun, vol.8, p.526, 2017.

C. Koh, M. D. Audsley, F. Di-giallonardo, E. J. Kerton, P. R. Young et al., Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture, Virus Evol, vol.5, p.12, 2019.

T. Teramoto, X. Huang, P. A. Armbruster, and R. Padmanabhan, Infection of Aedes albopictus Mosquito C6/36 Cells with the wMelpop Strain of Wolbachia Modulates Dengue Virus-Induced Host Cellular Transcripts and Induces Critical Sequence Alterations in the Dengue Viral Genome, J. Virol, vol.93, 2019.

M. S. Blagrove, C. Arias-goeta, C. Di-genua, A. B. Failloux, and S. P. Sinkins, A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus, PLoS Negl. Trop. Dis, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01680359

N. A. Ahmad, I. Vythilingam, Y. A. Lim, N. Zabari, and H. L. Lee, Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus, Am. J. Trop. Med. Hyg, vol.96, pp.148-156, 2017.

L. Mousson, K. Zouache, C. Arias-goeta, V. Raquin, P. Mavingui et al., The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus, PLoS Negl. Trop. Dis, vol.6, 1989.
URL : https://hal.archives-ouvertes.fr/pasteur-01680937

L. Mousson, E. Martin, K. Zouache, Y. Madec, P. Mavingui et al., Wolbachia modulates Chikungunya replication in Aedes albopictus, Mol. Ecol, vol.19, pp.404-417, 1953.
URL : https://hal.archives-ouvertes.fr/pasteur-00467675

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog, vol.6, 2010.

G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou et al., Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection, vol.340, pp.748-751, 2013.

I. J. Foo, A. A. Hoffmann, and P. A. Ross, Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes, Trop. Med. Infect. Dis, 2019.

P. A. Ross, S. A. Ritchie, J. K. Axford, and A. A. Hoffmann, Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions, PLoS Negl. Trop. Dis, vol.13, p.7357, 2019.

J. N. Ulrich, J. C. Beier, G. J. Devine, and L. E. Hugo, Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development, PLoS Negl. Trop. Dis, vol.10, 2016.

Y. H. Ye, A. M. Carrasco, Y. Dong, C. M. Sgro, and E. A. Mcgraw, The Effect of Temperature on Wolbachia-Mediated Dengue Virus Blocking in Aedes aegypti, Am. J. Trop. Med. Hyg, vol.94, pp.812-819, 2016.

L. Gavotte, H. Henri, R. Stouthamer, D. Charif, S. Charlat et al., A Survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia, Mol. Biol. Evol, vol.24, pp.427-435, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434685

L. Gavotte, F. Vavre, H. Henri, M. Ravallec, R. Stouthamer et al., Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species, Insect Mol. Biol, vol.13, pp.147-153, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427580

N. Chauvatcharin, A. Ahantarig, V. Baimai, and P. Kittayapong, Bacteriophage WO-B and Wolbachia in natural mosquito hosts: Infection incidence, transmission mode and relative density, Mol. Ecol, vol.15, pp.2451-2461, 2006.

S. R. Bordenstein and S. R. Bordenstein, Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility, PLoS ONE, vol.6, 2011.

C. H. Tsai, T. H. Chen, C. Lin, P. Y. Shu, C. L. Su et al., The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan, Parasit Vectors, vol.10, p.551, 2017.

L. B. Carrington, M. V. Armijos, L. Lambrechts, and T. W. Scott, Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti, PLoS Negl. Trop. Dis, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02011018

D. J. Dohm, M. L. O'guinn, and M. J. Turell, Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus, J. Med. Entomol, vol.39, pp.221-225, 2002.

D. T. Mourya, P. Yadav, and A. C. Mishra, Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus, Am. J. Trop. Med. Hyg, vol.70, pp.346-350, 2004.

L. R. Serbus, P. M. White, J. P. Silva, A. Rabe, L. Teixeira et al., The impact of host diet on Wolbachia titer in Drosophila, PLoS Pathog, vol.11, 2015.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, pp.450-453, 2011.

S. Balaji, S. Jayachandran, and S. R. Prabagaran, Evidence for the natural occurrence of Wolbachia in Aedes aegypti mosquitoes, FEMS Microbiol. Lett, p.366, 2019.

C. Teo, P. Lim, K. Voon, and J. Mak, Detection of dengue viruses and Wolbachia in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, vol.34, p.14, 2017.

K. L. Bennett, C. Gomez-martinez, Y. Chin, K. Saltonstall, W. O. Mcmillan et al., Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus, Sci. Rep, vol.9, 2019.

P. Thongsripong, J. A. Chandler, A. B. Green, P. Kittayapong, B. A. Wilcox et al., Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases, Ecol. Evol, vol.8, pp.1352-1368, 2018.

T. M. Carvajal, K. Hashimoto, R. K. Harnandika, D. M. Amalin, and K. Watanabe, Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit Vectors, vol.12, p.361, 2019.

A. Kulkarni, W. Yu, J. Jiang, C. Sanchez, A. K. Karna et al., Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, vol.9, pp.6148-6156, 2019.

K. L. Coon, M. R. Brown, and M. R. Strand, Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats, Mol. Ecol, vol.25, pp.5806-5826, 2016.

S. Hegde, K. Khanipov, L. Albayrak, G. Golovko, M. Pimenova et al., Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors, Front. Microbiol, vol.9, 2018.

P. R. Crain, P. H. Crowley, and S. L. Dobson, Wolbachia re-replacement without incompatibility: Potential for intended and unintended consequences, J. Med. Entomol, vol.50, pp.1152-1158, 2013.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI