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Abstract: The growing expansion of mosquito vectors has made mosquito-borne arboviral diseases a
global threat to public health, and the lack of licensed vaccines and treatments highlight the urgent
need for efficient mosquito vector control. Compared to genetically modified control strategies,
the intracellular bacterium Wolbachia, endowing a pathogen-blocking phenotype, is considered
an environmentally friendly strategy to replace the target population for controlling arboviral
diseases. However, the incomplete knowledge regarding the pathogen-blocking mechanism weakens
the reliability of a Wolbachia-based population replacement strategy. Wolbachia infections are also
vulnerable to environmental factors, temperature, and host diet, affecting their densities in mosquitoes
and thus the virus-blocking phenotype. Here, we review the properties of the Wolbachia strategy as an
approach to control mosquito populations in comparison with genetically modified control methods.
Both strategies tend to limit arbovirus infections but increase the risk of selecting arbovirus escape
mutants, rendering these strategies less reliable.

Keywords: mosquito control; replacement strategy; Wolbachia; environmental factors; arbovirus;
viral adaptation

1. Half of the World’s Population Exposed to Arboviral Diseases

Mosquito-borne arboviral diseases such as chikungunya, dengue, yellow fever, and Zika have
been one of the major public health issues over the last few decades, threatening more than half of
the world’s population [1]. These arboviruses have dispensed with the need for amplification in
wild animals to cause outbreaks in the human population. Human hosts serve simultaneously as
the reservoir, amplifier, and disseminator, and the major vectors are the anthropophilic mosquitoes
Aedes aegypti and Aedes albopictus [2]. Due to their complex transmission mechanisms with interactions
between viruses, mosquito vectors, and vertebrate hosts, all three evolving in changing environments,
the control of arboviral diseases is still extremely difficult. The frustrating lack of development of
broad-spectrum vaccines against arboviruses has pointed out the importance of new alternatives for
arboviral diseases control [3,4].

Chikungunya is a rapidly reemerging arboviral disease. In recent years, as the Indian Ocean
lineage (IOL) evolved, this Ae. aegypti adapted chikungunya virus (CHIKV) has caused several
outbreaks in tropical countries [5]. The newly emerged CHIKV IOL contains a mutation from Alanine
to Valine at position 226 in the E1 protein, which influences the pH threshold for fusion, facilitating
the virus entry [6]. Moreover, the E1-A226V mutation also increases the vector competence for
Aedes mosquitoes, particularly for Aedes albopictus [7]. Therefore, the epidemic areas have extended
beyond tropical regions, reaching the temperate countries in Europe where Ae. albopictus mosquitoes
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have been established since 1979 [8]; this species is now present in 20 European countries with the
highest infestation levels in France [9,10] and Italy [11]. Dengue virus (DENV) alone contributes
to approximately 390 million infections and tens of thousands fatal cases annually [12]. There are
four DENV serotypes, namely dengue-1, -2, -3, and -4, which trigger distinct immune responses in
humans [13]. Although a life-long immunity against a given DENV serotype could be acquired after
a first infection, a secondary infection with another DENV serotype could facilitate dengue severe
syndrome or dengue hemorrhagic fever (DHF) that increases the burden of this disease even if a
secondary infection does not always necessarily lead to DHF [14,15]. Moreover, the nearly 80% of
dengue asymptomatic cases enhance the risk of DENV transmission, thus complexifying the disease
control. Yellow fever virus (YFV) has not yet become a global threat but heavily affects Sub-Saharan
Africa and South America (mainly in Brazil), causing between 94,336 and 118,500 infection incidents
annually [16]. In Africa, the urban cycle results from sporadic spillover transmission from the jungle
cycle, while in America, human infections are only acquired in forests [17]. Although the YFV
live-attenuated vaccine has been available since the 1930s, the global stockpile of YFV vaccines is still an
issue due to the production process that requires specific pathogens-free (SPF) eggs; the limited supply
of SPF eggs makes it difficult to launch an urgent vaccination campaign [18]. The recent outbreaks in
Brazil and the imported cases from Angola to China have raised many concerns on the potential risk of
major outbreaks, especially for the immune-naïve populations in Asia [19–21]. Zika virus (ZIKV) was
first isolated from an infected monkey in Uganda in 1947. Starting from Yap Island in 2007 [22], a much
larger outbreak in French Polynesian islands followed [23], and reached Brazil at the end of 2013 [24].
Although ZIKV infection formerly caused only mild illness and was self-limiting [22], more severe
outcomes were reported, including microcephaly in newborns and the neurological affections [25,26]
giving it the status of a Public Health Emergency of International Concern in 2016 by the World Health
Organization (WHO). It should be noted that other emerging arboviruses have not yet caused large
outbreaks; they could be the next arboviral threats owing to current global changes, including climate
warming and increasing international exchanges [27]. Aedes mosquitoes are also transmitting Mayaro
(MAYV; genus: Alphavirus), and Usutu (USUV; genus: Flavivirus) viruses that originated from South
America and Sub-Saharan Africa, respectively [28,29]. Since 2000, MAYV has caused several outbreaks
in South America, although the number of reported infections remains low. The spread of MAYV to
non-endemic areas was reported in Europe after 2008, expanding the risk area of this disease [30].
Similar to MAYV, the USUV was first identified in 1959 [29], but the first human infection was reported
at the beginning of 1981 in Africa [31]. Since then, USUV has been introduced into Europe and was
repeatedly reported in mosquitoes, birds, and horses in 12 European countries [32].

2. Virus Overcomes Mosquito Immune Barriers to Be Transmitted by Generating
Viral Quasispecies

Aedes mosquitoes are the major vectors in transmitting arboviruses. They have expanded
their geographic distribution as a consequence of population growth, human activities, and climate
change, creating conditions favorable for their proliferation and introducing the means of passive
transportation [33]. Their distribution is no longer restricted to tropical regions, spreading to new
geographic regions over long distances and stepping up the global impact of arboviral diseases [33].

A mosquito vector acquires an arbovirus by taking a blood meal from a viremic host, after which
the virus enters into the midgut epithelial cell and replicates. After infection of the midgut, the virus
needs to escape through the midgut basal lamina and disseminate into the hemocele, infecting different
tissues or organs including salivary glands. Finally, in a subsequent blood meal, the virus is excreted
from the salivary glands and transmitted by the mosquito bite [34].

From the midgut to the salivary glands, the virus encounters different mosquito immune responses,
such as RNAi (RNA interference), the Toll, IMD (immune deficiency), and JAK-STAT (Janus kinase
signal transducer and activator of transcription protein) pathways, limiting the virus infection,
dissemination, and transmission [35]. Viral infections in mosquitoes result from a subtle balance
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between virus replication and cellular immunity, manifested by a persistent asymptomatic infection
in vectors [36]. Considering the error-prone nature of viral RNA-dependent RNA polymerase, RNA
viruses generate a collection of variants (namely quasispecies) during replication that facilitates viral
adaptation and transmission by mosquitoes [37,38]. Thus, after passing all these filters, only a fraction
of the viral population is transmitted to the vertebrate host [39]. This remains dependent on each
pairing of virus-mosquito that conditions the mosquito vector competence [34].

3. Population Replacement Strategy to Control Mosquito-Borne Diseases

As the pivot for arboviruses transmission, the mosquito vector is considered the target for efficient
arboviral diseases control. Depending on the outcomes, the mosquito population control strategies
could be roughly divided into two categories, population reduction and population replacement,
which by reducing the target population size or introducing an anti-pathogen phenotype into the target
population, respectively, minimizes the contact between arboviruses-carrying mosquitoes and human
hosts. The current strategy is to reduce the mosquito vector population with insecticides; however,
in the absence of a vector surveillance program, the impact of insecticides on local biodiversity is
unpredictable, in addition there is the risk in generating insecticide-resistant mosquitoes that decreases
the control efficacy, calling for more species-specific alternative methods [40]. Instead of reducing the
target population from the field, which might cause ecological disruption [41,42] and risk of secondary
pest emergence, population replacement has been proposed as an alternative [43]. Replacing the target
population with a pathogen-refractory strain could specifically reduce the pathogens’ transmission
while maintaining the population in its original ecological niche, limiting the risk of secondary pest
emergence [43].

A modified genetic-based population replacement approach is composed of an anti-pathogen
gene and a gene-drive system, in order to suppress the pathogen replication and to spread the
phenotype within the target population [44]. Different mosquito antiviral factors such as siRNA [45,46],
miRNA [47–49], ribozymes [50,51], immune factors [52], and neutralizing antibodies [53], can act as
effectors to reduce the virus infection and transmission in genetically modified mosquitoes. Combined
with a proper gene-drive system, the genetically modified mosquitoes expressing a virus-refractory
phenotype can replace the wild population in a few generations, that is to say in a few months
for mosquitoes. Although the biosafety concerns about using genetically modified insects is still
debatable [54], the highly-specific synthetic antiviral immunity used as effectors (RNAi, antiviral
ribozymes, overexpressed immune genes, and neutralizing antibodies) has raised issues regarding the
selection of escape virus mutants. Thus, strategies generating weaker selection in virus populations
might be more sustainable [55].

4. Wolbachia-Based Mosquito Control

The microbiota of mosquito vectors has a strong impact on arbovirus infections [56,57].
The endosymbiont bacteria Wolbachia has been in the spotlight with the discovery of its properties in
suppressing the replication of vector-borne human arboviruses such as DENV, YFV, and ZIKV [58,59].
The Wolbachia-based insect control approach is more acceptable than the genetic modification-based
approach for the public as it is a naturally existing microbe. Wolbachia is a Gram-negative bacterium,
a member of the Alphaproteobacteria (Rickettsiales order). In arthropods, the genome of Wolbachia
ranges from 1.2 to 1.6 Mb and contains WO prophages (named after Wolbachia) [60]. It was first
discovered in the Culex pipiens mosquito in 1924 by Hertig and Wolbach [61], opening a new avenue of
research owing to its high diversity and wide distribution in arthropods [62]. To date, 18 supergroups
of Wolbachia have been identified, most of them present in arthropods [63], and more than 65% of insect
species harbor Wolbachia [64]. Horizontal transfers of Wolbachia have been demonstrated between
species within the same supergroup and, conversely, the same host species can host different Wolbachia
strains. Wolbachia bacteria are involved in different symbiotic interactions ranging from parasitic to
mutualistic [62]. Mainly transmitted vertically, it intervenes in manipulating the host reproduction in
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order to optimize its maternal transmission through the eggs. Wolbachia can induce different sex ratio
distortion phenotypes in the progeny to favor females: parthenogenesis, feminization, male-killing,
and cytoplasmic incompatibility (CI) [65]. In the CI phenotype, Wolbachia-infected females are favored
over the non-infected females and males (Figure 1). The molecular mechanisms controlling the CI are
today better understood: CI and its rescue are driven by toxin-antidote interactions, whose affinity
between partners determines the success of the rescue [65]. For example, in Cx. pipiens during the
first embryonic mitosis, cidA and cidB of wPip are the key elements of CI traits [66], where the B
factor expresses its toxic effect inducing the CI effect and the A factor acts as an antidote for the rescue.
In addition to colonizing reproductive organs, Wolbachia bacteria are also present in somatic tissues;
Wolbachia can be acquired from infected embryonic lineages or by passing from cell to cell [67].
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Figure 1. Wolbachia-based mosquito control strategy can be viewed as a genetically modified control
approach, population replacement, or population suppression. (a) The population replacement strategy
is to release Wolbachia-infected female mosquitoes that, after mating with males (Wolbachia-infected or
not), produce viable offspring, allowing a wide spread of Wolbachia in the field population that harbors
less competent individuals, even as the total number of mosquitoes remains unchanged. (b) Population
suppression aims to release Wolbachia-infected male mosquitoes that, after mating with wild females,
do not produce viable offspring, thus reducing the total number of mosquitoes.

5. Wolbachia in Limiting Arbovirus Transmission

Wolbachia can provide fitness advantages for host fertility and/or survival and can alter
responses to infections to reduce arbovirus transmission. As an example, the wMel Wolbachia
strain artificially introduced in Drosophila melanogaster inhibited Drosophila C virus (DCV) infection,
and Wolbachia-infected flies were much more resistant to DCV than the uninfected flies [68,69].

Combining their ability to invade the host population by inducing CI and to interfere negatively
with the transmission of disease pathogens, Wolbachia-based control methods have been deployed
to prevent the transmission of mosquito-borne diseases [70,71]. The bacterium Wolbachia has been
introduced in natural populations of the mosquito Ae. aegypti, the urban vector of dengue, Zika,
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chikungunya, and yellow fever [72]. Wolbachia bacteria are stably maintained in field mosquito
populations and attributed to the pathogen-blocking phenotype [73]. The critical question is whether
this effect will persist and if adaptive changes in the mosquito vector, the bacteria, or virus may occur,
hampering the success of this strategy.

Wolbachia can share the same niche with the virus, colonizing ovaries, gut, and salivary glands,
organs that are essential for the replication and transmission of arboviruses [74]. Usually, high antiviral
resistance is associated with high densities of Wolbachia, which could reach several hundred bacteria
per cell [75] and cause a significant fitness cost (e.g., reduced fecundity, fertility, and survival) [76].
Mosquito adaptive changes may occur, leading to the evolution towards lower Wolbachia densities
and, therefore, a reduction or loss of the antiviral phenotype. Another concern is the evolution of
the virus itself; since Wolbachia block the replication of the virus, viral populations could be shaped
to overcome such inhibition. Variants able to replicate despite the presence of Wolbachia could be
advantaged and spread, weakening the sustainability of the Wolbachia control strategy. As an example,
in D. melanogaster, Wolbachia did not present antiviral effects for the Wolbachia-adaptive DCV, which
were genetically different from viral populations in Wolbachia-free controls [77]. These findings were
obtained from cell cultures, which are far from replicating the conditions in a natural host, with a
succession of reduction and restoration of viral diversities after crossing anatomical barriers (midgut
and salivary glands) in the mosquito vector [39].

6. The Hypothesized Mechanisms of Wolbachia-Mediated Pathogen Blocking Activity

Several mechanisms have been proposed to explain the molecular basis of the pathogen-blocking
phenotype: regulation of immune genes, indirect host gene regulation through other cellular machinery
(RNAi, sfRNA), production of reactive oxygen species, or competition for a limited resource such as
cholesterol. Growing evidence has shown that the mosquito transcriptome profiles were altered after
Wolbachia infection [52,70,78,79]. Insect immune pathways such as Toll, IMD, and JAK/STAT pathways
were activated in Wolbachia-infected Ae. aegypti, and led to an efficient reduction in replication
of CHIKV, DENV, and Plasmodium [52,70,78,79]. In addition to the immune factors, many genes
were reported to be upregulated and subsequently may be able to suppress virus replication; the
genes regulating reactive oxygen species production and the upregulation of Wolbachia-mediated
methyltransferase are also reported to suppress the replication of DENV in Ae. aegypti [52,80,81].
Mosquito non-coding RNA expression is also influenced upon Wolbachia infection, and might regulate
virus replication in infected cells [82]. Although the direct interaction between virus replication
and Wolbachia-induced miRNA is not fully understood, an extensively-expressed aae-miRNA-2940
in Wolbachia-infected mosquito cells was proven to upregulate methyltransferase expression and,
subsequently, reduce DENV replication [81]. Moreover, this methyltransferase upregulation negatively
controls the metalloprotease expression leading to a reduction in West Nile virus replication [83].
Recent studies have suggested that Wolbachia bacteria suppress virus replication through cellular
resources allocation (e.g., intracellular space in Wolbachia-infected cells [70,84]), vascular trafficking,
and lipid metabolism caused by Wolbachia-mediated cholesterol perturbation [85]. In fact, on one
hand, Wolbachia do not have any functional lipopolysaccharide synthase and need cholesterol for
membrane formation, while on the other hand, viruses rely on host cholesterol for replication. Therefore,
both behave as competitors for access to cholesterol ingested by the mosquito, which is auxotrophic for
this element [85]. Moreover, the limited intracellular space in Wolbachia infected cells is also reported
to restrict DENV replication [70,84].

7. Viruses Evolve towards an Adaption to Wolbachia-Blocking Activity

Recent studies have raised concerns regarding Wolbachia-mediated selection pressure for
arboviruses that might facilitate viral adaptive evolution and escape from pathogen-blocking effects [77].
Evidence has been brought that Wolbachia bacteria do not suppress the replication of viral RNA genomes
in mosquito cells and, consequently, are not able to accumulate adaptive viral genomes [86,87]. The same
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alteration can be observed in Wolbachia-infected D. melanogaster for DCV, where Wolbachia-mediated
selective DCV strains could be found after 10 passages in Wolbachia-infected flies. Despite the fact
that the adapted DCV strains did not exhibit the same resistance phenotype to Wolbachia in newly
Wolbachia-infected flies, evidence points to the risk of Wolbachia-mediated selection for virus adaptive
mutations. The resulting adapted viruses might have a better chance of escaping the Wolbachia-mediated
virus-blocking effects in drosophila [77]. Moreover, many studies have indicated the Wolbachia naturally
infecting Ae. albopictus, wAlbA, and wAlbB do not show significant pathogen-blocking activity against
virus infection in this mosquito [75,88–91]. Even if wAlbB is transinfected in other mosquito species,
it cannot trigger the pathogen-blocking phenotype, as observed with other Wolbachia strains [92,93].
These results raise the question of the outcome of co-evolution between Wolbachia and viruses,
highlighting the risk for viruses to escape from Wolbachia-mediated immunity (Figure 2a).
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Figure 2. Viruses escaping from Wolbachia blocking activity. (a) After ingestion of an infectious blood
meal (1), viruses enter into the midgut epithelial cells and replicate (2). Newly produced viruses are
released into the hemocoel, infecting internal organs/tissues (3). After reaching the salivary glands
(4), viruses replicate (5), and new viruses are excreted with saliva expectorated (6) by females when
they bite. In the presence of Wolbachia in the midgut and salivary glands, escaping variants can
be produced, leading mosquitoes to transmit viruses less sensitive to the pathogen-blocking effect.
(b) Wolbachia blocking activity can be altered by environmental factors such as temperature. Mosquito
larvae submitted to high temperatures produce adults with a lower density of Wolbachia. (c) Mosquito
adults feeding on enriched diets (carbohydrates and amino acids) show reduced Wolbachia loads. Both
(b) and (c) lead to a diminished blocking activity of Wolbachia as their bacterial densities are much lower.
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8. Environmental Factors That May Affect Wolbachia-Based Control Programs

8.1. An Abiotic Factor, the Temperature

In the field, Wolbachia-infected mosquitoes are exposed (naturally or not) to fluctuating and even
extreme temperatures (Figure 2b). Larvae reared under cycling temperatures between 26 ◦C and 37 ◦C
resulted in adults with a lower density of Wolbachia, an effect persisting across generations [94], and a
diminished CI effect that resulted in the inability of Wolbachia to be transmitted vertically [95]. More
interesting is the possibility that these effects could be strain-dependent. Temperature significantly
affects wMel and wMelPop-CLA in Ae. aegypti, whereas no effect was observed with wAlbB, which
naturally colonizes the mosquito Ae. albopictus, suggesting that the Wolbachia adaptation might reduce
the pathogen-blocking activity. Infections with wAlbB seem to be more applicable in a population
reduction strategy than pathogen suppression in field conditions. The duration of heat stress also
alters Wolbachia density [96]. A long duration of heat stress of Ae. aegypti immature stages leads to
lower wMel densities in adults. Complementary studies using local mosquitoes and field temperatures
are required in Wolbachia-released sites [97].

Temperature might influence Wolbachia density in Ae. aegypti through bacteriophage WO
infection [98]. High temperatures may reduce Wolbachia densities in Ae. aegypti through interactions
with WO, which infects wMel [99] and wAlbB [100]. This phage undergoes cycles of lysogenic and lytic
phases; heat shock triggers the lytic phase during which the phage replicates and causes Wolbachia
lysis, reducing its densities [101]. However, the temperature has a positive effect on virus replication
with significantly higher titers of DENV at temperature > 28 ◦C in Ae. aegypti mosquitoes at day
10 post-infection in salivary glands [102]. More globally, high temperature is likely to weaken the
Wolbachia-mediated pathogen-blocking activity by shortening the extrinsic incubation period (the time
necessary for mosquitoes to become infectious after an infectious blood meal) [103–105], and reducing
Wolbachia density through bacteriophage WO.

8.2. A Biotic Factor, the Host Diet for Mosquito Vectors

Host diet notably influences Wolbachia load (Figure 2c) [106]. Flies reared with yeast-enriched
diets show reduced Wolbachia loads in the host female germline, and flies with a high sucrose diet
show an increase of Wolbachia titer in oocytes. Thus, Wolbachia bacteria rely upon host uptake of amino
acids and carbohydrates. Exposure to yeast-enriched food alters Wolbachia nucleoid morphology in
oogenesis [106]. The yeast-induced Wolbachia depletion is mediated by the somatic target of rapamycin
(TOR) and insulin signaling pathways. These findings are critical in programs combating arboviral
diseases by releasing Wolbachia-infected vectors [73,107]. Thus, the natural environment including host
diet (i.e., nature of blood and sugar absorbed by released mosquitoes) should be considered when
evaluating the efficiency of Wolbachia strategies in the field.

9. Obstacles for Population Replacement Program

9.1. Unclear Wolbachia Distribution in Wild Mosquito Populations

Ae. aegypti populations were thought to be free of naturally-harboring Wolbachia; as a result, many
Wolbachia-based mosquito control strategies were deployed worldwide to reduce or replace the target
mosquito populations via the CI nature of Wolbachia. However, accumulating evidence shows the
existence of naturally-occurring Wolbachia in wild Ae. aegypti populations in India [108], Malaysia [109],
Panama [110], Thailand [111], Philippines [112], and the United States [113–115]. Even though only
small proportions of Ae. aegypti were reported in naturally-harboring Wolbachia in field-collected
populations, the presence of naturally-infecting Wolbachia tends to increase the instability for replacing
the target populations, thus weakening the efficacy of mosquito control programs.
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9.2. The Robust CI Effect Limits the Solutions for Wolbachia Re-Replacement

On the one hand, the naturally existing Wolbachia in the target population might be an obstacle for
the mosquito population replacement program. On the other hand, the robust CI effect also increases
the difficulty to re-replace the target population that has been already replaced by Wolbachia-harboring
mosquitoes. Because of this, the Wolbachia-mediated pathogen-blocking strategy implemented can
deviate from the objectives initially planned. Thus, a more flexible replacement program is required to
adapt to this scenario. The results of computational modeling have suggested that unless a correct
Wolbachia strain is used, the selection could favor the strain with a lower fitness cost (commensal
infection), thus replacing the existing Wolbachia-harboring population. Furthermore, the second
replacement can be less efficient than the first one [116].

10. Conclusions

Mosquito control, as an essential step for mosquito-borne diseases transmission management,
either by reducing the target population size or replacing the target population with a pathogen-
refractory strain, could efficiently reduce the contact between mosquitoes and hosts, thereby interrupting
the disease transmission. Compared to a genetically modified control strategy, a Wolbachia-based
control strategy is considered a promising alternative to control mosquito populations due to its
natural and environmentally friendly features: It can carry a broad pathogen-blocking activity and
robust CI effect, which together ensure the efficacy in reducing mosquito-borne diseases transmission.
However, complex interactions and resulting co-evolution processes among mosquito, virus, host,
and the environment, make difficult any mosquito-borne disease control strategies. Thus, monitoring
and prevention programs to avoid escape mutants in viral populations must be attentively planned if
the targeted objective is to reach a sustainable control strategy.
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