L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang et al., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system, Nucleic Acids Res, vol.41, pp.7429-7437, 2013.

F. J. Mojica, C. Díez-villaseñor, J. García-martínez, and C. Almendros, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, vol.155, pp.733-740, 2009.

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol, vol.31, pp.233-239, 2013.

S. H. Sternberg, S. Redding, M. Jinek, E. C. Greene, and J. A. Doudna, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, vol.507, pp.62-67, 2014.

G. Ramachandran and D. Bikard, Editing the microbiome the CRISPR way, Philos. Trans. R. Soc. B: Biol. Sci, vol.374, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02470706

J. M. Peters, B. Koo, R. Patino, G. E. Heussler, C. C. Hearne et al., Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi, 2019.

, Nat. Microbiol, vol.4, p.244

T. Wang, C. Guan, J. Guo, B. Liu, Y. Wu et al., Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance, Nat. Commun, vol.9, p.2475, 2018.

F. Rousset, L. Cui, E. Siouve, C. Becavin, F. Depardieu et al., Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors, PLos Genet, vol.14, p.1007749, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01975438

J. M. Peters, A. Colavin, H. Shi, T. L. Czarny, M. H. Larson et al., A comprehensive, CRISPR-based functional analysis of essential genes in bacteria, Cell, vol.165, pp.1493-1506, 2016.

X. Liu, C. Gallay, M. Kjos, A. Domenech, J. Slager et al., High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae, Mol. Syst. Biol, vol.13, p.931, 2017.

L. Cui, A. Vigouroux, F. Rousset, H. Varet, V. Khanna et al., A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9, Nat. Commun, vol.9, 1912.
URL : https://hal.archives-ouvertes.fr/pasteur-01819630

T. Van-opijnen and A. Camilli, Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms, Nature reviews. Microbiology, vol.11, pp.435-442, 2013.

T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol, issue.2, p.8, 2006.

A. Vigouroux, E. Oldewurtel, L. Cui, D. Bikard, and S. Van-teeffelen, Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes, Mol. Syst. Biol, vol.14, p.7899, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01967521

J. S. Hawkins, M. R. Silvis, B. Koo, J. M. Peters, M. Jost et al., Modulated efficacy CRISPRi reveals evolutionary conservation of essential gene expression-fitness relationships in bacteria, 2019.

D. G. Gibson, L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol, vol.34, pp.184-191, 2016.

M. A. Moreno-mateos, C. E. Vejnar, J. Beaudoin, J. P. Fernandez, E. K. Mis et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo, Nat. Methods, vol.12, pp.982-988, 2015.

J. Guo, T. Wang, C. Guan, B. Liu, C. Luo et al., Improved sgRNA design in bacteria via genome-wide activity profiling, Nucleic Acids Res, vol.46, pp.7052-7069, 2018.

K. B. Low, Experiments in molecular genetics, Q. Rev. Biol, vol.49, pp.151-151, 1974.

E. C. Goodall, A. Robinson, I. G. Johnston, S. Jabbari, K. A. Turner et al., The essential genome of Escherichia coli K-12. mBio, vol.9, pp.2096-2113, 2018.

M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, J. Mianné et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR, Genome Biol, vol.17, p.148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346049

J. G. Doench, E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation, Nat. Biotechnol, vol.32, pp.1262-1267, 2014.

R. Clarke, R. Heler, M. S. Macdougall, N. C. Yeo, A. Chavez et al., Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks, Mol. Cell, vol.71, pp.42-55, 2018.

Q. Zhang, F. Wen, S. Zhang, J. Jin, L. Bi et al., The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation, Sci. Adv, vol.5, p.9807, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02389898

H. Liu, Z. Wei, A. Dominguez, Y. Li, X. Wang et al., CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation, Bioinformatics, vol.31, pp.3676-3678, 2015.

M. A. Horlbeck, L. A. Gilbert, J. E. Villalta, B. Adamson, R. A. Pak et al., Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation, p.19760, 2016.

A. Tareen and J. B. Kinney, Logomaker: beautiful sequence logos in Python, Bioinformatics, vol.36, pp.2272-2274, 2020.