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1       Abstract  Cellular morphodynamics can be used as markers for many physiological 

2       and pathological processes. This protocol provides a step-by-step guide to iden- 

3       tify variations in motility and morphology within (or across) cell populations using 

4       non-invasive live imaging and reproducible image analysis techniques such as seg- 

5       mentation and tracking. Detailed instructions cover all the way from cell culturing 

6       and labelling to automatic image and statistical analyses, including the definition of 

7       multiple descriptors that characterise the shape and movement of cells in a quantita- 

8       tive manner. All methods are available as free open-source software and illustrated 

9       by video tutorials. 
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12       Introduction 

 
13       Advances in microscopy techniques and fluorescent probes have long being helping 

14       the scientific community determine the importance of cell movement and deforma- 

15       tion in multiple biological processes. However, many studies remain qualitative, i.e. 

16       differences in shape or motility are assessed visually, adding subjectivity to potential 

17       biological conclusions. Conversely, using image analysis to assign numerical val- 

18       ues to both shape and movement does not only guarantee the reproducibility of the 

19       conclusions but also opens the door to statistical analyses that allow classifying cell 

20       populations and phenotyping. Accordingly, we present a step-by-step manual that 

21       shows how to quantify cellular morphodynamics in a non-invasive and reproducible 

22       way using only confocal microscopy and fluorescent markers. 

23 The present protocol details both biological and computational experiments. We 

24       first describe the necessary biological techniques, namely culturing the cells and fluo- 

25       rescently labelling the cytoplasm; next, we comment on how to perform non-invasive 

26       imaging using a confocal microscope; and, finally, we provide a ready-to-use image 

27       analysis workflow that goes all the way from raw images to biological conclusions 

28       in a reproducible manner. More specifically, we present automatic tools for cell seg- 

29       mentation and tracking that are freely accessible as modules in the Icy platform; as 

30       well as multiple descriptors that quantify cell shape and movement from the resulting 

31       contours and tracks. These descriptors serve as a basis from which to perform statis- 

32       tical tests and assess any possible correlation between morphodynamical variables. 

33       All the key steps of the protocol are available as video tutorials and are exemplified 

34       using a population of Entamoeba histolytica, a highly motile parasite that migrates 

35       through diverse human tissues, including the intestine and the liver. 
 
 
 

36       Results 

 
37       Wet-Lab Protocol: Culturing Cells and Acquiring Images 

 
38       To quantify movement and deformation using image analysis (see dry-lab protocol), 

39       it is paramount to image the cells non-invasively (physiological relevance) and in 

40       good spatiotemporal resolution (easier analysis). To meet these two criteria, we label 

41       the cytoplasm with a fluorescent dye and use a spinning-disk confocal microscope. 
 
 

42       Cell Culture and Staining 
 

43       Trophozoites of the Entamoeba histolytica strain HM1: IMSS were grown overnight 

44       at 37 °C in TYI-S-33 medium (Diamond et al. 1978). Medium was then replaced 

45       by incomplete TYI-S-33 medium (serum/vitamines-free) (TYI). Cells were labeled 

46       with Cell Tracker™ Red CMTPX, a fluorescent dye that is well suited for monitoring 
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47       cell movement and displacements (Petropolis et al. 2014). The dye has low cytotox- 

48       icity, does not affect cell viability nor proliferation, and its fluorescence was stable 

49       during the entire imaging process, allowing us to track cellular movements with a red 

50       excitation/emission spectra (577/602 nm). In this case, we have used the fluorescent 

51       dye that emits in the red spectra because Entamoeba histolytica autofluoresces at 

52       488 nm. Since the forthcoming image analysis methods are based on accurate cell 

53       segmentation, in this paper we used non-confluent cultures. Other image analysis 

54       tools are required to deal with confluent cell cultures, but they are not the focus of 

55       this paper. 

56 Cells were incubated for 45 min at 37 °C, and then washed with TYI pre-warmed 

57       at 37 °C by reversing the tube and simply discarding the medium. No centrifugation 

58       is required because amoebas are adherent cells and remain attached to the glass 

59       tube during the process. Trophozoites were gently suspended in pre-warmed TYI by 

60       shaking the tube and then seeded on 35 mm glass-bottomed imaging Ibidi dishes, 

61       obtaining an estimate of 5 × 103 cells. 
 
 

62       Microscopy Experiment 
 

63       Images were taken with a spinning disk confocal microscope (25 × objective) inside 

64       an incubator at 37 °C to keep the parasites at a physiological temperature where 

65       they are specially motile. Indeed, at these temperature E. histolytica parasites can 

66       move at up to 1 µm/s in 2D culture conditions (Dufour et al. 2015). Fortunately, with 

67       the spinning disk microscope, images can be acquired at very high frame rates with 

68       minimal illumination and photo-bleaching of the living samples. 

69 Videos were recorded for four minutes at an imaging rate of one frame per second 

70       (i.e. a total of 240 frames) and at a pixel size of 0.48 µm. The fields of view were 

71       taken to be of around 512 × 512 pixels, corresponding to 246 × 246 µm2 , which 

72       typically contained around 2–6 cells. The z position was set at a height of around 

73       2 µm from the glass. 

74 Both pixel size and frame rate are necessary for the posterior image analysis, 

75       for example to obtain the speed in real units, and therefore need to be stored. They 

76       are typically stored automatically in the metadata of the image files by the software 

77       associated with the microscope, but we recommend to double-check that this is 

78       indeed the case. In our case, all images were acquired with the Volocity 3D image 

79       analysis software (Perkin Elmer, USA) and the files and their associated metadata 

80       stored in the mvd2 format. 

81 There are no potential dangers involved in the experiments, neither because of 

82       laser beams nor of parasite pathogenicity. However, a P2-class laboratory is needed 

83       to handle the living trophozoites. The protocol was set up according to the guidelines 

84       provided by the Safety Authorities and the Image Microscopy Facility platform of 

85       Institut Pasteur. 
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86       Dry-Lab Protocol: Analysing Images 
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The motility of a cell population can be studied quantitatively using image analysis. 

In this context, each individual cell in a video sequence is first singled out of the 

background in a process called segmentation. Cell segmentation not only allows 

to delimit the borders of the cells present in an image, but also to calculate their 

centroid and thus to track the displacement of the cells over time. On the one hand, 

digitising the contours of the cell opens the door to characterising the cell shape with 

descriptors such as roundness; on the other hand, the time tracks contain information 

on the movement of the cell such as its speed or the straightness of its trajectory, 

which shed light on the reasons behind its migration (random, directed chemotaxis, 

etc.). Therefore, these data enable a rich quantification of both cell morphology and 

motility that ideally translates into cell phenotyping when complemented with an 

extensive statistical and correlation analysis. 

The three main steps (segment, track and statistical assessment) are visited in detail 

in respective Sects. “Hierarchical K-Means”, “Active Contours”, “Cell Tracking 

with Track Manager” and are automatised by bioimaging softwares such as Icy (de 

Chaumont et al. 2012; Wiesmann et al. 2015), which we address immediately in 

Sect. 25.2.2. All steps are available as video tutorials. 
 
 
 

104 Bioimage Analysis Software 
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To quantify cell motility, we present Icy, a free and open-source platform for bioim- 

age analysis that provides multiple resources to visualize, annotate and quantify 

bioimaging data (http://icy.bioimageanalysis.org). 

Icy provides a user-friendly approach to new and classical image analysis tech- 

niques alike: filtering, segmentation, tracking…. They are all available under different 

modules called plug-ins who all share the same graphical interface. Examples of seg- 

mentation plug-ins are Thresholding, Active Contours, Parametric Snakes, Potts Seg- 

mentation, Spot Detector (Olivo-Marin 2002) and HK-Means (Dufour et al. 2008); 

whereas plug-ins such as Spot Tracking, Track Manager and Kymograph Tracker 

provide different approaches to tracking. In this protocol, we will focus on HK- 

Means (Sect. “Hierarchical K-Means”), Active Contours (Sect. “Active Contours”), 

and Track Manager (Sect. “Cell Tracking with Track Manager”) in order to provide 

a step-by-step guide on how to analyse cell shape and motility. 

The graphical interface integrates 2D and 3D visualisation resources, as well 

as a series of tools to easily crop and cut through time series, z-stacks or multi- 

channel sequences. Also intuitive is the management of so-called Regions Of Interest 

(ROIs), i.e. delimited areas of the image that are of special interest and that might 

want to be analysed aside, for example a cell segmented from the image. In the Icy 

platform, ROIs are superimposed over the original image and can be manipulated 

as independent objects on which common operations such as “copy/paste” (ctrl + 

c/v) or “delete” can be applied, allowing to easily combine analyses performed on 

http://icy.bioimageanalysis.org/
http://icy.bioimageanalysis.org/
http://icy.bioimageanalysis.org/
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different channels or sequences. ROIs are deeply integrated into Icy so that any 

analysis or quantification from them is automatic and straightforward. For instance, 

cell segmentation results are represented as ROIs from which multiple descriptors 

such as area, mean fluorescence intensity or roundness can be directly accessed in 

the ROI menu and exported into Excel files for further data analysis. 

As a last remark, in its most recent version 2.0, Icy has introduced a new image 

handling engine that allows working with big video sequences, be it either because 

they are long or because they were taken at very high spatial and/or temporal resolu- 

tion. The idea behind the new engine is that only a portion of the image sequence is 

loaded into the local RAM memory, while the rest is stored on hard-disk at the price 

of longer processing times. 

We have used the sequence called 25 × 40 to illustrate this protocol (Movie 1) 

over its several steps. The Time Stamp Overlay plugin (Tutorial 1) can be used to 

stamp the elapsed time onto the video. 
 
 
 

140 Cell Segmentation with Hierarchical K-Means and Active Contours 
 
 

141 Hierarchical K-Means 
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Hierarchical K-Means (HK-means or HKM here) is a segmentation method based 

on a K-Means clustering of the image histogram, i.e. an algorithm that divides the 

different intensity values in the image into groups according to a similarity mea- 

sure. Ideally, these groups correspond to the different cells and to the background. 

However, the K-means algorithm requires the number of groups to be specified in 

advance. To tackle this problem, a hierarchical strategy is introduced. In this way, the 

algorithm attempts to find the ideal number of groups using a bottom-up approach. 

This process can be helped if the user specifies a value for the expected minimum 

and maximum size of the cells. 

HKM is a fundamental tool in image processing; it is one of the go-to algorithms if 

the user wants to segment cells in a quick, ready-to-use and quasi-automatic manner. 

And precisely because of its hierarchical clustering approach, it performs better 

than classical clustering and thresholding algorithms. However, HKM suffers from 

three main drawbacks. First, it has difficulty telling apart cells that are in contact 

with each other. Second, big intensity heterogeneities inside the cell might trigger 

multiple detections. And third, since the resulting segmentations are groups of pixels 

rather than polygonal contours, some accuracy may be lost when computing shape 

descriptors. 

A step-by-step guide to the HKM plug-in in Icy can be found in Fig. 25.1 and is 

accompanied by Tutorial 2. 
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Fig. 25.1  Cell segmentation with HK-Means and ROI color selection. HK-Means can be opened 

from the detection tab or from the search bar. The first step is to choose which frames we are interested 

in segmenting (here we select frame 0, but ‘ALL’ is also a possibility). We have to specify the number 

of intensity classes (see the text for an explanation on HK-Means) in which the histogram is to be 

split. That is the number of different intercellular intensities (e.g. if all cells are the same intensity, 

two classes are enough). When in doubt, we recommend choosing higher values, but we also remark 

that it comes at a computational price. To aid the segmentation of the image into the different classes 

the user can also input an expected minimum and maximum size for the cells so as to eliminate 

possible groups that are respectively too small (e.g. debris) or too big to possibly be a cell (e.g. cell 

clusters). Notice that these sizes are required in pixels, to have a rough idea of the cell size in pixels 

draw a ROI around the cell and check its size (“Interior” descriptor in the ROI tab at the right-hand 

side). Finally, applying the Gaussian pre-filter can help improve the segmentation of noisy images. 

Since the segmentation output are ROIs, we can obtain any descriptor directly from the ROI tab. 

Here we show the perimeter, the area, the mean intensity, the roundness and the homogeneity inside 

the ROIs, but many more shape descriptors can be selected using the “gear” button. ROI colors can 

be chosen (see Tutorial 2) 
 
 
 

162 Active Contours 
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Active Contours (Zimmer et al. 2002) (AC) are well adapted to study cell morpho- 

dynamics; they provide accurate cell contours and are capable of segmenting cells 

that are in close contact, as well as cells with inner heterogeneities. However, in 

contrast to the more classical segmentation methods, AC need to be initialised. The 

user has to specify an approximative initial contour (ROI) around the cell so that the 

algorithm can pick up on it. This initialization can be done manually, by drawing 

the ROI over the object of interest, or automatically, using other segmentation tools 

(e.g. the above-described HKM). The initial ROI contours are then refined by the AC 

method, which slowly deforms the contour. In this way, the contour is progressively 

fitted to the cell shape in an attempt not only to separate the image into multiple 

intensities, but also to find the edges of the cells in the gradient of the image. When 

the segmentation spans a whole video sequence, the ROI resulting from segmenting 

a given frame can be used as an initial ROI for the following frame (see ‘track objects 

over time’ in the AC plug-in). Therefore, if the image acquisition is relatively fast, 

initialising the ROIs at the very first frame is enough to segment the entire sequence. 

In summary, whereas HKM is fast and does not need to be initialised, it is most 

performant when image quality is good and cells are well separated; otherwise AC 

take over at the price of initialisation and speed. In fact, we remark that a good 
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Fig. 25.2  Manual drawing of approximative ROIs and automatic cell segmentation with 

Active Contours. a The first step before running Active Contours is to draw approximative ROIs 

around each of the cells; we do it manually here (green ellipses), but one could use HK-Means to 

initialize the method automatically. b Active Contours can be opened from the detection tab or from 

the search bar. In order to segment and track all of the time frames make sure to activate “tracks 

objects over time”. Perhaps the two most important parameters of the plug-in are the edge and region 

weights, which control the balance between the importance of (1) the big intensity differences that 

are expected at the border of the cell and (2) the homogeneous intensity that is expected inside the 

cell as opposed to that of the outside. In addition, “contour inflation” might help compensate for a 

lack of contrast between cell and background by adding an artificial expansion rate. On the other 

hand, the set of evolution parameters are more technical but can help speed up the process and/or 

make the final contours more accurate. All parameter settings can be readily stored and loaded using 

the save icon on the bottom. The results of the segmentation are also presented as ROIs (see text 

and Tutorial 3) 
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approach is to combine the two; that is to use HKM (only) on the first frame to 

automatically set the initial ROIs required by AC. However, in this protocol we have 

found it more pedagogic to set the initial contours manually. 

A step by step guide to the AC plug-in in Icy can be found in Fig. 25.2 and is 

accompanied by Tutorials 2, 3 and 4. Movie 2 shows the segmented cells with Active 

Contours. 
 
 
 

187 Cell Tracking with Track Manager 
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Using either of the segmentation plug-ins on a video sequence results in a time-series 

of ROIs that can potentially be linked together to generate the track of a cell, i.e. 

to draw the path that the cell followed. At our spatiotemporal resolution, it suffices 

to associate a ROI at a given time point with the closest ROI at the following time 

point to accurately track cells; more precisely, it is the centroids of the successive 

ROIs that are concatenated into a cell track. However, more advanced tracking tools 

such as Multiple Hypothesis Tracking (Chenouard et al. 2013) become necessary 

for high-speed particle tracking. In either case, the resulting tracks can be analyzed 



487742_1_En_25_Chapter ./ TYPESET DISK LE  ./ CP Disp.:5/5/2020 Pages: 367 Layout: T1-Standard 

358 M. Manich et al.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

196 

 
197 

 
198 

 
199 

 
200 

 
201 

 
202 

 
203 

 
204 

 
205 

 
206 

 
207 

 
208 

 
209 

 
210 

 
211 

 
212 

 
213 

with the Track Manager (TM) module in Icy, which is readily invoked from the very 

segmentation plug-ins using the ‘send to track manager’ button. 

TM displays the resulting tracks directly overlayed on the original sequence. The 

tracks can also be analyzed through an accessible interface, for instance to investigate 

motility parameters such as cell speed or mean squared displacement (MSD) and 

compare them between populations or correlate them with other descriptors, for 

example of cell morphology (see below). All these quantifications tasks are done 

through so called Track Processors (TPs). Each TP has a specific function: from 

filtering unwanted tracks, to quantifying movement, passing by a myriad of display 

functionality such as color-coding the tracks (“TP Color”). In this protocol, we have 

used several TPs. Briefly, (i) “Motion Profiler” computes multiple motion descriptors 

such as the average speed or the linearity/persistence of the tracks; (ii) “Instant Speed” 

displays the speed of the cell as a time curve; whereas (iii) “ROI Statistics” (ROIS) 

displays time curves of several shape descriptors as is described in Sect. “Statistical 

Tests with R”. 

A step-by-step guide to the TM plug-in in Icy can be found in Figs. 25.3, 25.4 

and 25.5 and is accompanied by Tutorial 5. Movie 3 shows the segmented cells with 

Active Contours and their centroid tracks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 25.3  Cell track analysis with Track Manager and Track Processors. a Track Manager can 

be opened from the tabs or directly from most segmentation plug-ins (e.g. HK-Means or Active 

Contours, see respective Figs. 25.1, 25.2 and Tutorial 4). The tracks for each of the cells are 

automatically overlaid on the video sequence in the corresponding colors. b Each track is a separate 

entity and can be filtered or quantified by adding Track Processors. Here we are displaying the 

Color and Instant Speed Track Processors, but many others are available (e.g. see Figs. 25.4, 25.5 

and 25.6). The red vertical bar displays the current time point, and can be dragged to navigate the 

time sequence. Tracks can be saved into an.xml file 
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Fig. 25.4  Descriptors and visualisation of cell tracks with the Motion Profiler Track Processor 

in Track Manager. a By selecting Motion Profiler from the track processors in Track Manager, 

we obtain multiple descriptors of the three tracks. For example, we can see typical minimum, 

maximum and average speed values; and we can also quantify how straight the cells are moving 

with the measures of linearity and search radius. In addition, the processor can take the metadata 

into account to offer the values in real units. All these results can be exported to an Excel file. 

b Motion Profiler also provides a graphical representation of all the tracks from a common origin, 

from where we can visually assess whether motion is random or directed 
 
 
 

214 Morphological Descriptors and Statistical Tests with ROI Statistics and R 
 
 

215 Cell Descriptors with ROI Statistics 
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Different cell populations might be characterised by different morphologies. Given a 

time sequence of already segmented cells in the form of ROIs (e.g. with AC), the ROI 

Statistics (ROIS) processor in TM provides a wide range of geometrical properties 

that describe the shape of each ROI. Together with a posterior statistical analysis, 

these descriptors may help tell apart different populations or be used for phenotyping. 

Many such descriptors are available in ROIS; in this study, we only consider the fol- 
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Fig. 25.5  Time curves of cell speed with the Instant Speed Track Processor in Track Manager. 

By selecting Instant Speed from the track processors in Track Manager, we obtain the time curves 

of the speed at each time point along each of the cell tracks. These data can be used to explore the 

cycles of acceleration and deceleration of the cells for example. The curves can be exported to an 

Excel file 
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lowing: area (µm2 ), perimeter (µm), roundness (%), mean intensity values (a.u.) and 

homogeneity (a.u.). “Perimeter” measures the perimeter of the ROI in micrometers 

(here the scaling information is extracted automatically from the metadata). Equiv- 

alently, “Area” measures the ROI area in micrometers squared. “Mean intensity” 

averages the intensity values inside the ROI, whereas “Homogeneity” highlights the 

internal variations of the intensity distribution within the cell. Lastly, “Roundness” 

is a measure of how similar to a circle the ROI is. These data are displayed directly 

in Icy, but can also be exported to an Excel file (Table 25.1) for further analysis, 

for example to perform statistical tests that assess the correlation between each of 

the descriptors. For instance, we study the correlations between the temporal mean 

of all these parameters and the Speed (µm/s) resulting from TM. Alternative shape 

descriptors can be extracted by rewriting the cell shape in different mathematical 

basis such as Fourier (2D) or Spherical Harmonics (3D); these work well to separate 

populations, but often lack biological interpretability (Ducroz et al. 2012). 

A step-by-step guide to the TM plug-in in Icy can be found in Fig. 25.6. 
 
 
 

237 Statistical Tests with R 
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In order to assess whether any trend or correlation exists between the extracted 

descriptors we perform a visual pairwise comparison educated with Spearman’s 

rank correlation coefficient. So-called Spearman’s “rho” attempts to quantify the 

monotonicity of the relationship between a pair of variables, irrespectively of its 

linearity. The coefficient spans the interval [− 1, 1], where the extremes correspond 

to perfectly monotonic functions, respectively decreasing or increasing (i.e. functions 
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Name Area Homogeneity Intensity Perimeter Roundness Speed 

(µm2) (561) (561) (µm) (%) (µm/s) 

25 × 54 316.08 0.08 24,203 75.58 40.05 1.16 

2407.56 0.12 19,189 196.18 59.33 0.08 

25 × 49 2779.13 0.13 24,801 208.46 59.11 0.24 

308.78 0.15 15,070 69.42 48.16 1.21 

25 × 47 771.28 0.13 16,320 119.90 34.82 0.17 

411.95 0.13 21,341 81.62 49.3 0.43 

25 × 44 760.11 0.10 25,160 114.79 45.55 0.40 

684.88 0.10 25,544 100.88 68.20 0.12 

545.58 0.11 21,754 90.64 58.77 0.97 

689.35 0.10 23,625 108.82 48.97 0.25 

658.80 0.10 23,308 109.13 46.66 0.49 

929.79 0.10 23,857 119.42 61.02 0.16 

25 × 40 713.25 0.18 42,758 109.02 54.33 0.42 

438.46 0.32 46,123 88.07 42.48 0.60 

773.17 0.15 17,600 118.27 36.11 0.18 

25 × 38 362.51 0.11 18,333 73.27 59.32 1.05 

1045.82 0.10 22,956 132.80 37.29 0.10 

814.01 0.10 21,460 113.92 54.76 0.33 

25 × 36 1093.23 0.10 21,429 135.41 52.52 0.14 

525.07 0.08 27,100 92.00 50.12 0.31 

2713.55 0.10 36,252 233.99 29.84 0.10 

600.94 0.11 18,237 95.02 60.56 0.61 

25 × 35 329.77 0.1 22,166 73.21 47.95 1.10 

630.77 0.1 24,413 101.25 51.82 1.37 

681.54 0.1 21,612 107.25 48.32 0.14 

466.57 0.1 33,879 85.38 53.27 0.23 

617.05 0.11 19,998 104.93 41.30 0.22 

25 × 34 656.30 0.34 49,554 108.70 43.97 0.32 

663.35 0.21 10,132 103.12 47.39 0.29 

25 × 33 207.05 0.07 24,868 56.05 52.87 0.62 

595.10 0.13 16,759 97.52 52.17 0.86 

25 × 32 523.20 0.13 16,121 94.08 45.30 0.54 

653.94 0.11 19,977 105.08 41.45 0.14 

25 × 30 1084.28 0.11 23,447 130.04 30.10 0.15 

Table 25.1  Cell shape descriptors and speed for the 42 cells of the experiment.  (25 × 40 

illustrates the protocol, values are means) 
 

(continued) 
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Table 25.1  (continued) 

 

Name Area Homogeneity Intensity Perimeter Roundness Speed 

(µm2) (561) (561) (µm) (%) (µm/s) 

 887.42 0.09 23,499 128.19 39.44 0.24 

738.61 0.12 17,261 107.66 51.55 0.30 

791.83 0.08 26,903 115.63 47.52 0.15 

515.45 0.10 20,549 85.64 70.17 0.12 

25 × 29 430.99 0.09 23,945 90.56 35.33 0.54 

532.69 0.12 17,155 93.70 49.06 0.47 

437.21 0.12 16,415 85.08 47.43 0.37 

799.27 0.10 22,078 118.07 42.83 0.64 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25.6  Cell shape descriptors with the ROI Statistics Track Processor in Track Manager. By 

selecting ROI Statistics from the track processors in Track Manager, we obtain different descriptors 

of cell shape (perimeter, roundness, etc.) for each time point along a cell track. Here are presented 

the fluorescence average intensity values inside the ROIs. The data can be exported to an Excel file 
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253 

that always go down, or up, without fluctuations); and 0 indicates a lack of correlation. 

Precisely, the p-value associated with the coefficient results from testing whether this 

coefficient is significantly different from 0. 

Statistical analysis software can directly read the output values exported from Icy. 

Here, we use a short R routine that can automatically generate the pairwise graphics 

showing possible trends, as well as the correlation values and their corresponding 

p-values (Fig. 25.7). This program uses some functionality from the ggplot2 library. 

While it is not the aim of the paper to provide in-depth statistical insight, we remark 

that it is important to check whether your data satisfies all the assumptions made 

during the statistical analysis. For illustrative purposes, in Fig. 25.7 generated by 
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Fig. 25.7  Statistical analysis of cell descriptors shows a significant correlation between cell 

speed and size. The figure is a matrix quantifying the correlation between pairs of descriptors for 

n = 42 cells from 13 different movies. On the upper triangular side, Spearman’s correlation values 

resulting from descriptor pairs are displayed accompanied by their significance in the form of stars. 

The values are also displayed using a color gradient (red positive, blue negative) to facilitate the 

analysis. On the lower triangular side, we plot descriptor pairs on a normalised scale to show any 

possible trend. The diagonal contains univariate density plots 
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the R routine, we display univariate descriptor density plots (diagonal) and pair- 

wise descriptor plots (lower diagonal), but directly compute the pairwise correlation 

coefficients and their associated tests (upper diagonal) with no prior analysis. 
 
 
 

257 Example to Illustrate the Proposed Protocol for Image Analysis 
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During the in vitro growth of E. histolytica, it is common to observe diverse pheno- 

types regarding the size of the cells, their mobility, the heterogeneity of fluorescence 

during labeling, etc. We wondered whether the protocol proposed here could help 

us identify any correlations between these phenotypes. After acquisition of video- 

microscopies of E. histolytica seeded on glass, the image analysis was performed on 

n = 42 cells from 13 different video sequences. The data highlights several relation- 
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ships: the obvious correlation between area and perimeter, a less evident correlation 

between cell fluorescence intensity and homogeneity (as the image saturates), and 

a strong and significant (***) correlation between the size of the cell and its mean 

speed (Table 25.1 and Fig. 25.7). For instance, the five smallest cells moved at 62 ± 

14 µm/min, whereas the five largest cells moved at 9 ± 4 µm/min. Therefore, this 

experiment allows to conclude that the smaller cells have a higher average speed in 

the amoeba population moving on glass. This original observation opens the door 

to further studies on the molecular mechanisms sustaining the correlation between 

size and speed of E. histolytica when moving on a planar and neutral surface such 

as glass. 
 
 
 
 

274 Conclusion 
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280 

We expect this protocol to serve as a beginner’s guide for cell biologists that would 

like to capture the morphodynamical characteristics of their live cell populations in 

a quantitative manner by using image analysis. The results are any potential correla- 

tions between multiple morphodynamical descriptors (in the present case, we found 

a link between cell size and speed), as well as the possible discovery of criteria that 

can tell apart subpopulations of cells. 
 
 
 
 

281 Materials and Basic Methods 
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Biological Materials 
 

 
–  Trophozoites of Entamoeba histolytica strain HM1:IMSS growing in TYI-S33 

media (Diamond et al. 1978). 
–  Cell Tracker™ Red CMTPX (ThermoFisher, catalog number C34554, final con- 

centration 2.5 µM). Before use, suspend the dessicated dye (50 µg) in 8.33 µl of 

DMSO to obtain a 10 mM stock solution. An intermediate dilution (1/200) has to 

be prepared to avoid aggregates of DMSO and Cell Tracker in the media. 
–  35 mm high glass-bottom Ibidi dish (catalog number 81158, Ibidi, France). 
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Equipment 
 

 
–  Microbiological safety station with laminar flow to manipulate the cells; wearing 

a blouse and gloves is mandatory during the experimental steps. 
–  Spinning disk confocal microscope (UltraVIEW VoX, Perkin Elmer, USA; 

excitation: 561 nm; objective: 25×; temperature control set to 37 °C). 
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Softwares 
 

 
–  Volocity (Perkin Elmer, USA) to perform imaging. 
–  Icy (Institut Pasteur, France) to perform image analysis. 
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Summary of the Protocol 

Procedure—The protocol can be summarised as a general workflow (Fig. 25.8) in 

the following steps: culture the cells and label them with a fluorescent cytoplasm dye; 

image the cells with a temporal resolution that is appropriate to the cell movement. 

Save the video sequences on the hard-disk; open the Icy software and allocate RAM 

according to the expected image size, open the sequence, and double-check the 

metadata; draw initial ROIs over the cells and run the Active Contours plug-in; send 

the resulting segmentation to the Track Manager, use the different track processors 

to analyse cell movement and shape and export them to Excel; perform statistical 

and correlation tests on the data, for example using R. 

Timing—Cell labelling and preparation takes between one and two hours. Live 

imaging only involves setting up the sample on the microscope and taking multiple 

video sequences of around 240 frames (i.e. around 4 min). Segmentation and tracking 

takes a fraction of a second per frame. Statistical analysis takes well under an hour. 

Troubleshooting—1. Check that the Java version in your computer is compatible 

with Icy. 2. From within the preferences tab in Icy assign RAM memory to the 

software according to the potential size of your images. 3. Check that your temporal 

resolution is adequate: if there are too many frames per second compared to the speed 

of the cells, remove frames in constant intervals in order to lift some computational 

burden. 4. All stages of the quantification can be saved in their corresponding formats. 

For example, image sequences can be saved in.tif, whereas ROIs and tracks are saved 

in.xml. This guarantees complete reproducibility, as slightly different ROIs can result 

in slightly different segmentations. 

Data availability—All data presented in this protocol (files as.tif,.xml,.avi,.mov) 

and tutorials are available online (Manich 2020) so that any potential user can 

reproduce the results by following the protocol. 
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Fig. 25.8  Summary of the protocol. See text for a complete description of the protocole 
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