N

N

Recommendations for the packaging and containerizing
of bioinformatics software
Bjorn Gruening, Olivier Sallou, Pablo Moreno, Felipe da Veiga Leprevost,
Hervé Ménager, Dan Sgndergaard, Hannes Rost, Timo Sachsenberg, Brian
O’Connor, Fabio Madeira, et al.

» To cite this version:

Bjorn Gruening, Olivier Sallou, Pablo Moreno, Felipe da Veiga Leprevost, Hervé Ménager, et al..
Recommendations for the packaging and containerizing of bioinformatics software. F1000Research,
2018, 7, pp.742. 10.12688/f1000research.15140.2 . pasteur-02769991

HAL 1Id: pasteur-02769991
https://pasteur.hal.science/pasteur-02769991

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://pasteur.hal.science/pasteur-02769991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

'.) Check for updates

OPINION ARTICLE
Recommendations for the packaging and containerizing

of bioinformatics software [version 2; peer review: 2 approved, 1
approved with reservations]

Bjorn Gruening ““'1, Olivier Sallou?, Pablo Moreno3, Felipe da Veiga Leprevost?,
Hervé Ménager "“'5, Dan Sendergaard®, Hannes Rést’, Timo Sachsenberg?®,
Brian O'Connor /9, Fabio Madeira '3, Victoria Dominguez Del Angel ' 10,
Michael R. Crusoe 11 Susheel Varma3, Daniel Blankenberg ' 12,

Rafael C. Jimenez "“' 13, BioContainers Community, Yasset Perez-Riverol '3

1Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, 79110, Germany

2Institut de Recherche en Informatique et Systémes Aléatoires (IRISA/INRIA) - GenOuest Platform, Université de Rennes, Rennes, France
SEMBL European Bioinformatics Institute, Cambridge, UK

4Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA

5Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France

6Bioinformatics Research Centre, Aarhus University, Aarhus, DK-8000, Denmark

"The Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada

8Applied Bioinformatics Group, Wilhelm Schickard Institut fiir Informatik, Universitét Tiibingen, Tibingen, D-72076, Germany
9Computational Genomics Lab, UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
10|nstitut Frangais de Bioinformatique (Elixir-FR), UMS3601-CNRS, Université Paris-Saclay, Orsay, 91403, France

11Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA

12Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA

13ELIXIR Hub, Cambridge, CB10 1SD, UK

https://doi.org/10.12688/f1000research.15140.1)

Latest published: 20 Mar 2019, 7(ELIXIR):742 (

; ?
https://doi.org/10.12688/f1000research.15140.2) Reviewer Status " ¢

Abstract Invited Reviewers

Software Containers are changing the way scientists and researchers 1 2 3

develop, deploy and exchange scientific software. They allow labs of all

sizes to easily install b|0|nforrT1at|cs software, maintain mulltlpltle ve.rS|ons of version 2 o o

the same software and combine tools into powerful analysis pipelines. - ;
. (revision) por repor

However, containers and software packages should be produced under

. . . 20 Mar 2019

certain rules and standards in order to be reusable, compatible and easy to

integrate into pipelines and analysis workflows. Here, we presented a set of

recommendations developed by the BioContainers Community to produce version 1 ? ?

standardized bioinformatics packages and containers. These 14 Jun 2018 report report

recommendations provide practical guidelines to make bioinformatics
software more discoverable, reusable and transparent. They are aimed to
guide developers, organisations, journals and funders to increase the
quality and sustainability of research software.

Keywords
containers and packages, best practices bioinformatics, reproducibility

Page 1 of 16

https://f1000research.com/articles/7-742/v2
https://f1000research.com/articles/7-742/v2
https://orcid.org/0000-0002-3079-6586
https://orcid.org/0000-0002-7552-1009
https://orcid.org/0000-0002-7681-6415
https://orcid.org/0000-0001-8728-9449
https://orcid.org/0000-0002-5514-6651
https://orcid.org/0000-0002-2961-9670
https://orcid.org/0000-0002-6833-9049
https://orcid.org/0000-0001-5404-7670
https://orcid.org/0000-0001-6579-6941
https://f1000research.com/articles/7-742/v2
https://f1000research.com/articles/7-742/v1
https://doi.org/10.12688/f1000research.15140.1
https://doi.org/10.12688/f1000research.15140.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.15140.2&domain=pdf&date_stamp=2019-03-20

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

1 KaYee Yeung , University of Washington

® Tacoma, Tacoma, USA

elixir This article is included in the ELIXIR gateway. Daniel Kristiyanto .2, University of
Washington, Seattle, USA

2 Monther Alhamdoosh , CSL Limited,

. Parkville, Australia
This article is included in the International Society
University of Melbourne, Parkville, Australia

j 4
lngBe for Computational Biology Community Journal

INTERNATIONAL SOCIETY FOR

3 Evan Floden , Barcelona Institute of
gateway. .
Science and Technology (BIST), Barcelona,
Spain
Any reports and responses or comments on the
This article is included in the EMBL-EBI collection. article can be found at the end of the article.

Corresponding author: Yasset Perez-Riverol (yperez@ebi.ac.uk)

Author roles: Gruening B: Conceptualization, Investigation, Software, Writing — Original Draft Preparation, Writing — Review & Editing; Sallou O:
Software, Writing — Original Draft Preparation, Writing — Review & Editing; Moreno P: Software, Writing — Original Draft Preparation, Writing —
Review & Editing; da Veiga Leprevost F: Software, Writing — Original Draft Preparation, Writing - Review & Editing; Ménager H: Software, Writing
- Original Draft Preparation, Writing — Review & Editing; Sendergaard D: Software, Writing — Original Draft Preparation, Writing — Review &
Editing; Rést H: Software, Writing — Original Draft Preparation, Writing — Review & Editing; Sachsenberg T: Software, Writing — Original Draft
Preparation, Writing — Review & Editing; O'Connor B: Software, Writing — Original Draft Preparation, Writing — Review & Editing; Madeira F:
Software, Writing — Original Draft Preparation, Writing — Review & Editing; Dominguez Del Angel V: Resources, Writing — Original Draft
Preparation, Writing — Review & Editing; Crusoe MR: Conceptualization, Writing — Original Draft Preparation, Writing — Review & Editing; Varma S:
Writing — Original Draft Preparation, Writing — Review & Editing; Blankenberg D: Writing — Original Draft Preparation, Writing — Review & Editing;
Jimenez RC: Writing — Original Draft Preparation, Writing — Review & Editing; Perez-Riverol Y: Conceptualization, Investigation, Methodology,
Project Administration, Software, Writing — Original Draft Preparation, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was partially supported by ELIXIR-EXCELERATE. ELIXIR-EXCELERATE is funded by the European Commission
within the Research Infrastructures programme of Horizon 2020, grant agreement numbers 676559. The BioContainers workshop (Paris 2017) and
the BioContainers community that developed these recommendations are supported by the ELIXIR Tools platform. FVL is supported by NIH grants
R01GM94231 and U24CA210967.

Copyright: © 2019 Gruening B et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Gruening B, Sallou O, Moreno P et al. Recommendations for the packaging and containerizing of bioinformatics
software [version 2; peer review: 2 approved, 1 approved with reservations] F1000Research 2019, 7(ELIXIR):742 (
https://doi.org/10.12688/f1000research.15140.2)

First published: 14 Jun 2018, 7(ELIXIR):742 (https://doi.org/10.12688/f1000research.15140.1)

Page 2 of 16

https://f1000research.com/gateways/elixir
https://f1000research.com/gateways/elixir
https://f1000research.com/gateways/iscb
https://f1000research.com/gateways/iscb
https://f1000research.com/gateways/iscb
https://f1000research.com/collections/ebi
https://f1000research.com/collections/ebi
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.15140.2
https://doi.org/10.12688/f1000research.15140.1
https://orcid.org/0000-0002-1754-7577
https://orcid.org/0000-0002-6246-0884
https://orcid.org/0000-0002-2411-1325
https://orcid.org/0000-0002-5431-190X

e N

EEI@ Amendments from Version 1

The current version of the manuscript contains minor changes
regarding the structure and minor comments suggested by the
reviewer. This new version contains the correct Dockerfile recipe
and a link to the example in GitHub. We have added a couple of
paragraphs to discuss the relation between BioContainers and
work-flow environments.

In the ‘Grant information’ section we list NIH grants that supported
Felipe da Veiga Leprevost, as this was missed out on version 1.

See referee reports

Introduction

The ability to reproduce the results of a scientific study is a cor-
nerstone of the scientific method, and yet remains one of the
most significant challenges in modern science. Evidence from
multiple authors suggest that reproducibility in biomedical
research is lower than 85%', with 90% of researchers asserting
a reproducibility crisis within science’. One major obstacle
to reproducible science is the accurate and complete report-
ing of all experimental and computational steps required to
obtain the described results. The ability to accurately repro-
duce bioinformatics analysis, including data handling and
statistical downstream processing frequently poses significant
challenges—even when performed by the original authors of a
study’.

In addition, reproducing computational analysis by other
researchers requires the deployment of the bioinformatic software
at a different site. Previous publications have highlighted the
importance of openness and availability of tools, software, scripts
and data™’, and focused on three central premises for repro-
ducible bioinformatics software deployment: (i) documenting
the version of all software, (ii) open source availability of the
source code and all custom software, (iii) adopting a license and
complying with third-party dependency licenses™*.

However, even if source code and data are published in a pub-
lic repository as Supplementary material to a paper, the source
code may have non-obvious dependencies on other software,
configuration options, operating systems and other subtleties that
hamper re-usability’. Building, installing, and deploying scien-
tific software often requires additional information missing in
the published manuscript or the accompanying documentation.
Additionally, workflows and pipelines commonly combine
software developed by different teams and groups, adding
another layer of complexity and introducing challenges such as
compatibility and management of dependencies, running serial
and parallel processes and working with a broad variety of
software types and user-defined parameters. Software contain-
ers have emerged as a powerful technology to address primary
dependency issues and enable distributing and deploying
scientific software in a runnable state®.

Software packages are collections of computer programs along
with metadata, such as dependencies, descriptions, and versions,
required for distribution and deployment. Package management

F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

systems are used to search for software, resolve dependen-
cies, and then install the requisite dependencies and software.
The most common package managers exist at the level of
the operating system, such as yum, apt, and pacman. These
allow for the installation of software on a system-wide basis.
Containers constitute lightweight software components and
libraries that can be quickly packaged, are designed to run
anywhere’, and are useful and essential tools to leverage
bioinformatics software reproducibility. Package managers are
often used to create the execution environment within contain-
ers. Conda packages and Docker/Singularity containers are
well-known technologies that have already gained traction in
the field of bioinformatics’. By May 2018, the BioContainers®,
and Bioconda'” communities have released more than 4000
public containers, facilitating the development of complex
and reproducible workflows and pipelines''-'>.

This manuscript describes a core set of recommendations
and guidelines to improve the quality and sustainability of
research software based on software packages and containers. It
provides easy-to-implement recommendations that encourage the
adoption of packaging (e.g. Conda) and container (e.g. Docker,
Singularity) technologies in bioinformatics and software
development for research. It provides recommendations
about making research software and its source code more
reproducible, deployable, reusable, transparent and more
compatible with other tools and software. In this manuscript,
software is broadly defined to include command line tools,
graphical user interfaces, application program interfaces (APIs),
infrastructure scripts and software packages (e.g. R packages).

Recommendations

1. A package first

A software package is self-contained software including all
the dependency libraries and packages necessary to execute
the software. Some of the most popular and well-known
package management systems are operating system-level, such
as apt or yum, are language-specific resources, such as pip/PyPI,
CPAN, or CRAN, or are third-party package managers such
as Zero Install, Homebrew, and Conda. When choosing a
package manager, it is important to select one that is cross-
platform (e.g. works on various Linux distributions and
MacOS), allows multiple versions of each package, does not
require administrative nor elevated privileges to use and, ideally,
is not restricted to a single programming language. Being

cross-platform enhances reusability, providing for multiple
versions enables reproducibility, and allowing user-based
installation and multiple development languages simplifies
usability.

Conda, is a popular package manager in research software, it
quickly installs, runs and updates packages and their depend-
encies. It handles dependencies for many languages, such as
C, C++, R, Java, Perl, and Python. It works cross-platform and
does not require special permissions for installation of itself
or requested packages. Conda supports the creation of indi-
vidual and unique execution environments and allows multiple
versions of packages to be installed in a user-declared fashion.

Page 3 of 16

http://biocontainers.pro/
https://bioconda.github.io/
http://0install.net/
https://brew.sh/
https://conda.io/

The field of bioinformatics has developed an active commu-
nity around Bioconda'’. Bioconda is a channel for the Conda
package manager specialised in bioinformatics software.
You can create a Conda package by defining a BioConda
recipe (Box 1). This recipe includes enough information about
the dependencies, the license and fundamental metadata to
find, retrieve and use the package. When a recipe is added to

Box 1. Bioconda recipe for “deepTools”, a set of user-friendly
tools for normalisation and visualisation of deep-sequencing
data

package:
name: deeptools
version: ‘3.0.2'

source:
fn: deepTools-3.0.2.tar.gz

url:
https://ffiles.pythonhosted.org/packages/21/63/
095615a9338c824dcc1496a302d04267c6741750081e1ee2f897f33539f/
deepTools-3.0.2.tar.gz

md>5: 4553d9c828ba4b5b93ca387917649281
build:
number: O
requirements:
build:
- python
- setuptools
- gcec
run:
- python
- pybigwig >=0.2.3
-numpy >=1.9.0
- scipy >=0.17.0
- matplotlib >=2.1.1
- pysam >=0.14.0
- py2bit >=0.2.0
- plotly >=1.9.0
- pandas
test:
imports:
- deeptools
commands:
- bamCompare —version
about:
home: https://github.com/fidelram/deepTools
license: GPL3

summary: A set of user-friendly tools for normalisation and
visualisation of deep-sequencing data

extra:
identifiers:
- biotools:deeptools
- doi:10.1093/nar/gkw257

F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

Bioconda, it is automatically built into a usable package, tested
and made available as a Docker container via Quay.io and
as a Singularity container", and is displayed in the BioContainers
registry®.

2. One tool, one container

Microservice and modular architectures'* provide a way of
breaking large software projects down into smaller, independent
and loosely coupled modules. These software applications can
be viewed as a suite of independently deployable, small, modu-
lar components in which each tool runs a unique process and
communicates through a well-defined, lightweight mechanism
to serve a specific task'*. Each of these independent modules is
referred to as a container. A container is essentially an encapsu-
lated and immutable version of an application, coupled with the
bare-minimum operating system components (e.g. dependencies)
required for execution®.

Containers should be defined to be as granular as possible, with
the premise of one tool, one container. Each container should
encapsulate only one piece of software that performs a unique
task with a well-defined goal (e.g. sequence aligner, mass
spectra identification). This recommendation, one tool, one
container, should be implemented carefully, keeping containers
as modular and scoped in functionality as possible. Developers
may use their judgement to compose a layered container based on
other containerised tools. Here, we strongly recommend that the
modular composition of these tools should also be exposed as a
single modular tool - still abiding by “one tool, one container”.

Is important to highlight that workflow composition is not
addressed in the scope of this article as we are tied to the one
container = one tool paradigm. Workflow environments such
as Nextflow and Galaxy will execute 1 (task, process) per tool,
each tool being one container.

3. Tool and container versions should be explicit

The tool or software wrapped inside the container should be
fixed explicitly to a defined version through the mechanism
available by the package manager used (Box 2). The ver-
sion used for this main software should be included in both the
metadata of the container (for ease of identification) and the
container tag. The tag and metadata of the container should also
include a versioning number for the container itself, meaning
that the tag could look like a version of the tool or version of
the container. The container version, which does not track the
tool changes but the container revision, should follow semantic
versioning to signal its backward compatibility.

If a copy is done via git clone or equivalent, a specific commit
or a tagged git version should be specified, never a branch only.
Cloning a branch (master, develop, etc.) will always use the
latest source code in that branch making impossible to repro-
duce the build process since the different source code will be
built as soon as the branch is updated by the software authors.
Upstream authors should be asked to create a stable version
of their software with reasonable guarantees that the specified
version works as advertise including passing all automated
tests (Recommendation 7)—this will often be a release version.

Page 4 of 16

https://bioconda.github.io/
https://github.com/bioconda/bioconda-recipes
https://files.pythonhosted.org/packages/21/63/095615a9338c824dcc1496a302d04267c674175f0081e1ee2f897f33539f/deepTools-3.0.2.tar.gz
https://files.pythonhosted.org/packages/21/63/095615a9338c824dcc1496a302d04267c674175f0081e1ee2f897f33539f/deepTools-3.0.2.tar.gz
https://files.pythonhosted.org/packages/21/63/095615a9338c824dcc1496a302d04267c674175f0081e1ee2f897f33539f/deepTools-3.0.2.tar.gz
https://github.com/fidelram/deepTools
http://dx.doi.org/10.1093/nar/gkw257

Box 2. BioContainers recipe (Dockerfile) for Comet software

The public Dockerfile is here:

https://github.com/BioContainers/containers/blob/
b5bec8724bf61d696523216244264db11ebal137d6/
comet/2015025/Dockerfile

FROM biocontainers/biocontainers:v1.0.0_cv4
LABEL base_image="biocontainers:v1.0.0_cv4”
LABEL version="3"

LABEL software="Comet”

LABEL software.version="2016012"

LABEL about.summary="an open source tandem mass
spectrometry sequence database search tool”

LABEL about.home="http://comet-ms.sourceforge.net”

LABEL about.documentation="http://comet-ms.sourceforge.
net/parameters/parameters_2016010”

LABEL about.license_file="http://comet-ms.sourceforge.net”
LABEL about.license="SPDX:Apache-2.0”

LABEL extra.identifiers.biotools="comet”

LABEL about.tags="Proteomics”

LABEL maintainer="Felipe da Veiga Leprevost <felipe@
leprevost.com.br>"

USER biodocker

RUN ZIP=comet_binaries_2016012.zip && wget https://github.
com/BioDocker/software-archive/releases/download/Comet/
$ZIP-O/tmp/$ZIP&&unzip/tmp/$ZIP-d/home/biodocker/bin/
Comet/&&chmod-R 755/home/biodocker/bin/Comet/*&&rm/
tmp/$ZIP

RUN mv/home/biodocker/bin/Comet/comet_binaries_2016012/
comet.2016012.linux.exe/home/biodocker/bin/Comet/comet
ENV PATH /home/biodocker/bin/Comet:$PATH

WORKDIR /data/

Any patches added on top of the officially released source code
should be highlighted.

For projects that practice agile software development (including
continuous integration) where each version is stable, tested
and works as advertised, the SVN or git identifier can be used
as the tool version for the container—possibly with the addi-
tion of a date in YYYYMMDD format to easily identify
newer versions from older versions. Please note that depend-
ing on the used source code management system (git, hg, svn,
cvs) it is possible to remove entire commits or rewrite the com-
mit history of a project. Therefore, the safest way is to use a
release tarball and can be archived separately, as Bioconda and
BioContainers are doing.

4. Avoid using ENTRYPOINT

It is a well-known feature of Docker that the entry point of
the container can be over-written by definition (e.g., ENTRY-
POINT [/bin/ping]). The ENTRYPOINT specifies a command
that will always be executed when the container starts. Even
when the ENTRYPOINT helps the user to get a default behav-
iour for a tool, it is generally not recommended because of
reproducibility concerns of the implicit hidden execution
point. By explicitly executing the tool by its executable inside
the container (using the container as an environment and not

F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

as a fat binary merely through its ENTRYPOINT) the user
(e.g. workflow) can recognise and trace the tool that is used within
the container.

4.1. Relevant tools and software should be executable in the
PATH. 1f for some reason the container needs to expose more
than a single executable or script (for instance, EMBOSS or
OpenMS'' or other packages with many executables), these
should always be executable and be available in the container’s
default PATH. This will, almost always, be the case by default
for everything installed via package managers (dpkg, yum, pip,
etc.), but if you are adding tailored made scripts or installing
by source, take care to add the executables to the PATH.
This allows the container to be used as an environment or to
specify alternative commands to the main ENTRYPOINT easily
(Recommendation 4).

5. Reduce the size of your container as much as possible

As containers are frequently pushed and pulled (uploaded and
downloaded) to/from container registries over the internet,
their size matters. There are multiple ways to reduce the size of
your container during builds, the most efficient way is to have
two different containers: one for building the app and the sec-
ond container for deploying the app (which will be the one
user will download). While you may need multiple libraries,
source code and dependencies for building the app, you should
only include the bare necessities in the deployment container,
which will actually run the app. Some general guidelines
that can be followed are listed below (see Supplementary File 1):

* Avoid installing "recommended” packages in apt based
systems in your deployed container.

¢ Do not keep build tools in the deployed image (this includes
compilers and development libraries). You can install these
tools in the build image.

e Use a lightweight base image for your deployed
container. Only use a more mainstream image such as
Ubuntu or CentOS if absolutely required for your applica-
tion to run. The BioContainers community provides also a
set of images based on Ubuntu (see example biocontainers:
v1.0.0_cv4) and Debian.

6. Keep data outside of the container

Data can dramatically increase the size of the container
(Recommendation 5), thereby reducing the capability to share,
deploy and deposit it in public registries. In order to imple-
ment tests during the building and deployment steps, we
recommend downloading or cloning the data from public data
repositories and deleting it after the testing is finished. This
mechanism is similar to the one stated in Recommendation 5 for
retrieving source and binaries.

Many bioinformatics tools require access to large reference
datasets to perform meaningful analysis. These reference data-
sets should also not be included within the container but should
be stored in a user-configurable location and retrieved either
on-demand during runtime, or as part of a setup process.

Page 5 of 16

https://github.com/BioContainers/containers/blob/5bec8724bf61d696523216244264db11eba137d6/comet/2015025/Dockerfile
https://github.com/BioContainers/containers/blob/5bec8724bf61d696523216244264db11eba137d6/comet/2015025/Dockerfile
https://github.com/BioContainers/containers/blob/5bec8724bf61d696523216244264db11eba137d6/comet/2015025/Dockerfile
http://comet-ms.sourceforge.net
http://comet-ms.sourceforge.net/parameters/parameters_2016010
http://comet-ms.sourceforge.net/parameters/parameters_2016010
http://comet-ms.sourceforge.net
mailto:felipe@leprevost.com.br
mailto:felipe@leprevost.com.br
https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP-O/tmp/$ZIP&&unzip/tmp/$ZIP-d/home/biodocker/bin/Comet/&&chmod-R 755/home/biodocker/bin/Comet/*&&rm/tmp/$ZIP
https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP-O/tmp/$ZIP&&unzip/tmp/$ZIP-d/home/biodocker/bin/Comet/&&chmod-R 755/home/biodocker/bin/Comet/*&&rm/tmp/$ZIP
https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP-O/tmp/$ZIP&&unzip/tmp/$ZIP-d/home/biodocker/bin/Comet/&&chmod-R 755/home/biodocker/bin/Comet/*&&rm/tmp/$ZIP
https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP-O/tmp/$ZIP&&unzip/tmp/$ZIP-d/home/biodocker/bin/Comet/&&chmod-R 755/home/biodocker/bin/Comet/*&&rm/tmp/$ZIP
https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP-O/tmp/$ZIP&&unzip/tmp/$ZIP-d/home/biodocker/bin/Comet/&&chmod-R 755/home/biodocker/bin/Comet/*&&rm/tmp/$ZIP

Not only does storing reference datasets outside of the
container reduce the size of the container, but other tools
that require access to the same reference data will be able to
directly access the data without additional overhead. It is also
recommended that datasets themselves are versioned and all
downloaded files are verified using secure cryptographic hashes.

7. Add functional testing logic

If others want to build your container locally, want to rebuild
it later on with an updated base image, want to integrate it to
a continuous integration system or for many other reasons,
users might want to test that the built container still serves the
function for which it was initially intended. For this, it is useful
to add some functional testing logic to the container (in the form
of a bash script for instance) in a standard location (here we
propose a file called “runTest.sh”, executable and in the path),
which includes all the logic for:

¢ Installing any packages that might be needed for testing,
such as wget for instance to retrieve example files for the
run.

e Obtaining sample files for testing, which might be for
instance an example data set from a reference archive.

¢ Running the software that the container wraps with that
data to produce an output inside the container.

e Comparing the generated output and exit with an error
code if the comparison is not successful.

The file containing testing logic is not meant to be executed
during container build time, so the retrieved data and packages
do not increase the size of the container when it is built.
However, because the testing file is inside the container, any
user who has built the container or downloaded the container
image can check that the container is working as intended
by the author by executing “runTest.sh” inside the container.

8. Check the license of the software

When adding software or data in a container, always check
the license of the resource being added. A free-to-use license
is not always free to distribute or copy. The license must
always be explicitly defined in your Docker labels. For some
licenses, the license file needs to be shipped within the container
and with the software. If a license is not specified, you should

5,15

ask the upstream author to provide a license™".

9. Make your package or container discoverable

Biomedical research and bioinformatics demand more efforts
to make bioinformatics software and data more findable
(discoverable), accessible, interoperable, and reusable (FAIR
principles)'®. Leveraging those principles, we recommend
to the bioinformatics community and software developers to
make their containers and packages more findable. To make
your package available, we recommend the following steps:

* Annotate packages and containers with metadata that
allows users (e.g. biologists and bioinformaticians) to find
them.

F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

e Make packages and containers available. We recommend
developers to make the recipe of how to build a con-
tainer available for others, including i) the source code
or binaries of the original tools; ii) the configuration
settings and test data.

e Register packages and container in existing bioinformatics
registries helping users and services to find them.

e Registries such as BioContainers® and bio.tools'’
collaborate with each other by exchanging metadata and
information using different APIs and a common identifier
system.

* Deposit the built container image in a public container
registry, such as Docker Hub, Quay.io or a publicly
available and well supported institutional registry for
container images.

10. Provide reproducible and documented builds

While containers strive to make research reproducible and
transparent, it is equally essential that the process of creating
and building containers themselves is transparent and repro-
ducible. Many Docker containers do not provide an associated
Dockerfile, which would allow an independent party to
reproduce and verify the container build independently. Other
build procedures rely on the presence of specific web resources,
download binary files from the internet or can only be built
with in-house resources that are not available to the public.

With BioConda and BioContainers every recipe is available and
the mechanisms to create and build it. The Biocontainers reg-
istry provides a view to each recipe. Our recommendation is
to provide clearly documented steps on how to generate all the
binaries directly from the source code; if it is possible, engage
with one of these two open-source communities to make your
recipe available. Adding documentation to BioContainer and
Conda recipes will allow the author as well as users to
understand the build process and modify it their needs. If a
particular resource may not be readily available or consists of
a binary file, provide further instructions on how to re-create
this resource (e.g. a link to a second recipe that creates the
resource).

11. Provide helpful usage message

Usability and discoverability are crucial for packaged
containers. If your tool provides a help “-h”, “--help” or “?”
message, consider providing this as the default command,
“CMD” in case of a Dockerfile. If your tool does not provide a
default usage message, consider providing this information in an
ancillary “README.md” message. Your tool’s help or usage
message is a useful place to provide a list of commands in
logical groups, along with each command, giving a brief
description, defaults, required arguments, and options.

Conclusions

This manuscript promotes and encourages the adoption of
package and container technologies to improve the quality and
reusability of research software. The recommendations share a set
of core views that are summarised below:

Page 6 of 16

e Simplicity: the encapsulated software should not be a
complex environment of dependencies, tools and scripts.

* Maintainability: the more software included in the con-
tainer, the harder it is to maintain it, especially when the
software comes from different sources.

e Sustainability: the developers of the software should be
engaged or made aware of supporting the sustainability of
the container.

e Reusability: a tool container should be safe to reuse by
any other workflow component or task through its access
interface.

e [nteroperability: different tools should be easy to connect
and exchange information.

e User’s acceptability: a tool container should perform
a specific atomic task, so it is easier to check and use.

e Size: containers should be as small as possible. Smaller
containers are much quicker to download and therefore
they can be distributed to different machines much
quicker.

Supplementary material

F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

e Transparency: containers should be transparent in how
they are built, which tasks they are designed to perform
and how the build process can be reproduced.

As with many tools, a learning curve lays ahead, but several
basic yet powerful features are accessible even to the beginner
and may be applied to many different use-cases. For users
involved in scientific research and bioinformatics interested in
this topic without experience working with software packages or
containers, we recommend exploration and engagement with
the BioContainers initiative.

Data availability
No data is associated with this article.

Grant information

This work was partially supported by ELIXIR-EXCELERATE.
ELIXIR-EXCELERATE is funded by the European Commis-
sion within the Research Infrastructures programme of Hori-
zon 2020, grant agreement numbers 676559. The BioContainers
workshop (Paris 2017) and the BioContainers community that
developed these recommendations are supported by the ELIXIR
Tools platform. FVL is supported by NIH grants ROIGM94231
and U24CA210967.

Supplementary File 1. Additional guidelines to make your container smaller.

Click here to access the data.

References

1. Macleod MR, Michie S, Roberts |, et al.: Biomedical research: increasing value,
reducing waste. Lancet. 2014; 383(9912): 101-4.
PubMed Abstract | Publisher Full Text

2. Baker M: 1,500 scientists lift the lid on reproducibility. Nature. 2016; 533(7604):
452—-4.
PubMed Abstract | Publisher Full Text

3. Sandve GK, Nekrutenko A, Taylor J, et al.: Ten simple rules for reproducible
computational research. PLoS Comput Biol. 2013; 9(10): e1003285.
PubMed Abstract | Publisher Full Text | Free Full Text

4. Grining B, Chilton J, Koster J, et al.: The backbone of research reproducibility-
sustainable and flexible tool deployment. F1000Res. In Bioinformatics Open
Source Conference 2017; 2017.

Publisher Full Text

5. Perez-Riverol Y, Gatto L, Wang R, et al.: Ten Simple Rules for Taking Advantage
of Git and GitHub. PLoS Comput Biol. 2016; 12(7): e1004947.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Jiménez RC, Kuzak M, Alhamdoosh M, et al.: Four simple recommendations
to encourage best practices in research software [version 1; referees: 3
approved]. F1000Res. 2017; 6: pii: ELIXIR-876.

PubMed Abstract | Publisher Full Text | Free Full Text

7. Boettiger C: An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review. 2015; 49(1): 71-9.
Publisher Full Text

8. da Veiga Leprevost F, Griining BA, Alves Aflitos S, et al.: BioContainers: an
open-source and community-driven framework for software standardization.
Bioinformatics. 2017; 33(16): 2580-2.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Nekrutenko A; Team G, Goecks J, et al.: Biology Needs Evolutionary Software

Tools: Let’s Build Them Right. Mo/ Biol Evol. 2018; 35(6): 1372-5.
PubMed Abstract | Publisher Full Text | Free Full Text

10. Grlning B, Dale R, Sjédin A, et al.: Bioconda: A sustainable and comprehensive
software distribution for the life sciences. bioRxiv. 2017; 207092.
Publisher Full Text

11. Pfeuffer J, Sachsenberg T, Alka O, et al.: OpenMS - A platform for reproducible
analysis of mass spectrometry data. J Biotechnol. 2017; 261: 142-8.
PubMed Abstract | Publisher Full Text

12. Afgan E, Baker D, Batut B, et al.: The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2018 update. Nucleic
Acids Res. 2018; 46(W1): W537-W544.

PubMed Abstract | Publisher Full Text | Free Full Text

13. Kurtzer GM, Sochat V, Bauer MW: Singularity: Scientific containers for mobility
of compute. PLoS One. 2017; 12(5): e0177459.
PubMed Abstract | Publisher Full Text | Free Full Text

14. Balalaie A, Heydarnoori A, Jamshidi P: Microservices architecture enables devops:
Migration to a cloud-native architecture. /[EEE Software. 2016; 33(3): 42-52.
Publisher Full Text

15. Leprevost Fda V, Barbosa VC, Francisco EL, et al.: On best practices in the
development of bioinformatics software. Front Genet. 2014; 5: 199.
PubMed Abstract | Publisher Full Text | Free Full Text

16. Tyler J, Frith GH: Primary drug abuse among women: a national study. Drug
Alcohol Depend. 1981; 8(4): 279-86.
PubMed Abstract | Publisher Full Text

17. lIson J, Rapacki K, Ménager H, et al.: Tools and data services registry: a
community effort to document bioinformatics resources. Nucleic Acids Res.
2016; 44(D1): D38-47.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 7 of 16

http://biocontainers.pro/
https://f1000researchdata.s3.amazonaws.com/supplementary/15140/6185852b-f373-4cf7-8977-ef150a57c0e0.docx
http://www.ncbi.nlm.nih.gov/pubmed/24411643
http://dx.doi.org/10.1016/S0140-6736(13)62329-6
http://www.ncbi.nlm.nih.gov/pubmed/27225100
http://dx.doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/24204232
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pmc/articles/3812051
http://dx.doi.org/10.7490/f1000research.1114482.1
http://www.ncbi.nlm.nih.gov/pubmed/27415786
http://dx.doi.org/10.1371/journal.pcbi.1004947
http://www.ncbi.nlm.nih.gov/pmc/articles/4945047
http://www.ncbi.nlm.nih.gov/pubmed/28751965
http://dx.doi.org/10.12688/f1000research.11407.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5490478
http://dx.doi.org/10.1145/2723872.2723882
http://www.ncbi.nlm.nih.gov/pubmed/28379341
http://dx.doi.org/10.1093/bioinformatics/btx192
http://www.ncbi.nlm.nih.gov/pmc/articles/5870671
http://www.ncbi.nlm.nih.gov/pubmed/29688462
http://dx.doi.org/10.1093/molbev/msy084
http://www.ncbi.nlm.nih.gov/pmc/articles/5967460
http://dx.doi.org/10.1101/207092
http://www.ncbi.nlm.nih.gov/pubmed/28559010
http://dx.doi.org/10.1016/j.jbiotec.2017.05.016
http://www.ncbi.nlm.nih.gov/pubmed/29790989
http://dx.doi.org/10.1093/nar/gky379
http://www.ncbi.nlm.nih.gov/pmc/articles/6030816
http://www.ncbi.nlm.nih.gov/pubmed/28494014
http://dx.doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pmc/articles/5426675
http://dx.doi.org/10.1109/MS.2016.64
http://www.ncbi.nlm.nih.gov/pubmed/25071829
http://dx.doi.org/10.3389/fgene.2014.00199
http://www.ncbi.nlm.nih.gov/pmc/articles/4078907
http://www.ncbi.nlm.nih.gov/pubmed/6978244
http://dx.doi.org/10.1016/0376-8716(81)90037-5
http://www.ncbi.nlm.nih.gov/pubmed/26538599
http://dx.doi.org/10.1093/nar/gkv1116
http://www.ncbi.nlm.nih.gov/pmc/articles/4702812

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

Open Peer Review

Current Peer Review Status: v : v

Reviewer Report 09 September 2019

https://doi.org/10.5256/f1000research.20358.r53246

© 2019 Floden E. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Evan Floden
Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona,
Spain

The article provides a series of best practise proposals on the important subject of encapsulating
bioinformatics software. Conda and containers are fast becoming indispensable technologies for the
deployment, sharing and reuse of bioinformatics tools and analyses. The availability of software through a
Bioconda package or BioContainer is becoming a prerequisite for the adoption and use of any given
bioinformatics tool. The widespread use of packages and containers has been made possible through the
use of workflow managers such as Nextflow and Galaxy that wrap the standard commands into Docker or
Singularity commands, mount the required volumes in the container or even build the Conda environment
at run time. The recommendations provided in the article are sensible and well justified. The joint focus on
both package managers and containerisation technologies allows the reader to compare and contrast the
approaches with examples, whilst providing a description of shared resources such as Bioconda
Packages being built as BioContainers.

One comment | have relates to the “One tool, one container” recommendation. In reality, this is often not
practical. For example, the inclusion of utility tools for the basic reading, writing and conversion of files
(e.g. Samtools) often becomes a practical requirement. The author's state “is important to highlight that
workflow composition is not addressed in the scope of this article as we are tied to the one container =
one tool paradigm”, however, the use of containers without a workflow manager is not recommended for
the majority of users. This recommendation could be updated to include for the recent multi-container

registry.

Minor fixes:
1. “ls important to highlight that” should be “It is important to highlight that”.

2. “which will be the one user will download” should be “which will be the one users will download”.

3. Reference 16 (Tyler J, Frith GH: Primary drug abuse among women: a national study. Drug Alcohol
Depend. 1981; 8(4): 279-86") appears to be incorrect.

Page 8 of 16

https://doi.org/10.5256/f1000research.20358.r53246
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5431-190X

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

References
1. Tyler J, Frith GH: Primary drug abuse among women: a national study.Drug Alcohol Depend. 1981; 8
(4): 279-86 PubMed Abstract | Publisher Full Text

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Scientific Workflows, Multiple Sequence Alignment

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 17 June 2019

https://doi.org/10.5256/f1000research.20358.r45998

© 2019 Yeung K et al. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Ka Yee Yeung

Institute of Technology, University of Washington Tacoma, Tacoma, WA, USA
Daniel Kristiyanto

University of Washington, Seattle, WA, USA

In particular, the authors addressed the wording issues that we pointed out in the previous review. E.g. 1)
Instead of claiming that "BioConda is the most popular package manager", the author has rephrased it
into "Bioconda is a popular package manager". 2) They removed the recommendation to use alpine
altogether to consistent with the sample docker.

We also tested the provided sample docker file. We were able to build the container and to run it
successfully. A small issue is that it takes almost 20 Gb traffic to build the container, resulting in 1.3 Gb

docker image --contradicting their recommendation to reduce container as small as possible.

Is the topic of the opinion article discussed accurately in the context of the current literature?

Page 9 of 16

http://www.ncbi.nlm.nih.gov/pubmed/6978244
https://doi.org/10.1016/0376-8716(81)90037-5
https://doi.org/10.5256/f1000research.20358.r45998
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1754-7577
http://orcid.org/0000-0002-6246-0884

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 02 August 2018
https://doi.org/10.5256/f1000research.16494.r36273

© 2018 Alhamdoosh M. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

? Monther Alhamdoosh
1 CSL Limited, Parkville, Vic, Australia
2 Bjo21 Institute, University of Melbourne, Parkville, Vic, Australia

Gruening et al. addressed a very important issue in the field of bioinformatics, which is

the reproducibility of research analytics. The authors clearly highlighted the importance of software
packaging in containers in order to enable fast deployment and building of bioinformatics workflows and
analytics. Namely, they focused on the importance of documenting software versions, the availability of
source codes and the need to adopt a license when using third-party software. Extending the definition of
a software package to include command line tools, GUIs, APIs, scripts and specialized software
packages is a very good idea although | have some reservations (see below). The authors proposed
eleven recommendations to improve software packaging and containerization in bioinformatics. They also
present some of the best practices as part of their recommendations.

| have a few comments on this manuscript that authors would probably like to address in their revised
version.

Major comments

® |t would be helpful if you could provide a figure on how BioContainers, BioConda and Docker talk
to each other in light of these recommendations. Probably, this figure from your GitHub can be

Page 10 of 16

https://doi.org/10.5256/f1000research.16494.r36273
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2411-1325
https://github.com/BioContainers/specs/blob/master/imgs//workflow.png

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

adopted https://github.com/BioContainers/specs/blob/master/imgs//workflow.png

® |t would be helpful to show an example of how to make use of these packaged and
containerized objects.

® Some weblinks need to be fixed on the BioContainers website, e.g.,
http://biocontainers.pro/docs/developer-manual/deploy-dockerhub/, to enable new users to adopt

these recommendations.

Minor comments

® Bioconductor R packages usually released in versions following milestone releases of
Bioconductor. Why are they distributed in separate containers? How do you make sure that people
will not use different versions from different releases?

® The use of the words "computational biology" and "bioinformatics" interchangeably is confusing. |
would recommend using one of these two words.

® The purpose of the first recommendation is not clear. It might need to be pronounced further.

® The concepts of the metadata and tag are not explained clearly. This might make it difficult for
people not familiar with containers to understand Recommendation 3.

Overall, the manuscript introduces a great way of standardising bioinformatics research and empowering
reproducibility of data analytics in the biomedical field.

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: | co-authored a manuscript with some of the authors of this manuscript in the past.

Reviewer Expertise: Bioinformatics, Translational Bioinformatics, Drug Discovery, Biomarkers
Discovery, Research Software Development

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Author Response 20 Nov 2018

Page 11 of 16

https://github.com/BioContainers/specs/blob/master/imgs//workflow.png
http://biocontainers.pro/docs/developer-manual/deploy-dockerhub/

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

olivier sallou, University of Rennes 1, France

Hi, thanks for your comments.

Regarding usage examples, we tried to avoid explaining Docker concepts as it does not focus on
Docker only. Indeed containers will work with any container image compliant image (rkt,
singularity), and would certainly need further explanations on what are Docker volumes etc.... We
expect user to understand the basis of container usage.

Regarding web links, you're right, some examples in documentation need to be fixed

About R packages, they could be in a single container, but this would create a huge container to
manipulate and difficult to maintain (and which packages should be put?). If user really needs a
container with multiple R packages, he can create one based on an existing container and add
what is necessary. We focus on programs (R for example) and not libraries (r-xxx lib) as it is not
possible to provide a container matching all user needs. Some libraries are provided either with
automatic package injection from other sources or for the need of a few users.

If a user need a workflow/composition of multiple *tools*, user should use scripting of container
enabled workflow tools that will execute one task = one tool = one container, and avoid putting all
workflow tool in a single container.

Competing Interests: No competing interests were disclosed.

Reviewer Report 16 July 2018

https://doi.org/10.5256/f1000research.16494.r35062

© 2018 Yeung K et al. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

?

Ka Yee Yeung

Institute of Technology, University of Washington Tacoma, Tacoma, WA, USA
Daniel Kristiyanto

University of Washington, Seattle, WA, USA

The authors addressed the reproducibility issue in bioinformatics research. While many factors can be
attributed to this issue, the paper focused on the tools and software packages. With more research being
done and more tools in Bioinformatics made available as packages and complex workflows, this work is a
good reminder of the importance of writing well-written products that the community can use and
replicate.

The manuscript provided sound advice in building and maintaining these tools. It also presented easy to
follow sample and template of the solutions. The guidelines are itemized with a clear explanation of the
necessity of the rules. Not only for bioinformatics community, but the guidelines are also general enough
to serve as good practices for general use in writing software packages. Recommendations include

Page 12 of 16

https://doi.org/10.5256/f1000research.16494.r35062
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1754-7577
http://orcid.org/0000-0002-6246-0884

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

choosing a cross-platform package manager, encapsulating a single tool in each container, reducing the
package size, keeping data outside the container, providing testing logic, checking licensing issues, and
providing usage messages.

As a demonstration, the authors scoped the samples and templates to BioConda and BioContainer, with
claims that these software packages are the most popular among bioinformatics community. The
reviewers would like to request a reference for the statement “Conda, the most popular package manager
in research software”. The example is concise and easy to follow. However, the sample does not strictly
reflect what the guidelines proposed in the manuscript. For instance, the manuscript recommended the
readers to use Alpine for the base image for Docker containers, the example template in “Box 2” used
another pre-built Docker Image instead. The reviewers would like to request the authors to explain or
revise the example.

Additionally, the manuscript suggested to break down each package or containers as an atomic task to
enhance modularity in Guideline #2. However, the authors did not discuss the crucial issue of how to
assemble these different packages into a single workflow. Especially, as the authors also noted,
bioinformatics workflows often consist of complex pipelines. Coverage on how parameters should be
organized would also be useful (e.g., using environment variables versus a text file or command line
parameters).

In addition, recommendation #4 (avoid entry point) assumed that the tools would always be
command-line based; this may not always be the case. Please elaborate when handling GUI based
containerized tools.

Lastly, we failed to replicate the provided sample script for Comet software with error *Syntax error - can't
find = in "open". Must be of the form: name=value™ on Docker for Mac: Version 18.03.1-ce-mac65
(24312). Please double check.

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however we have significant
reservations, as outlined above.

Author Response 20 Nov 2018
olivier sallou, University of Rennes 1, France

Page 13 of 16

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

Hi,
regarding cCnda reference as "the most popular”, | agree the should be rephrased as "a popular”

Regarding Alpine base image, you suppose you refer to "Use a lightweight base image for your
deployed container, such as Alpine. Only use a more mainstream image such as Ubuntu or
CentOS if absolutely required for your application to run."

Biocontainers (Dockerfile based) makes indeed use of an other image (Ubuntu based) to allow
user to exec bash/vim/... operations in containers and easily extend them. If not needed (oout of
biocontainers scope), Alpine is recommended to limit container size and scope. This sentence
should be rephrased to explain this difference.

Workflow composition is not addressed in the scope of this article as we are tied to the one
container = one tool paradigm (though not being too strict on this...)

Workflow tools (nextflow, cwl based or others) will execute 1 task per tool, each tool being one
container. But maybe that, indeed, it would be worth to explain users the such tools are needed for
workflow execution in containers context.

Recommendation #4 about entry point still applies for GUI based tools. A GUI tool is just a cmd line
tool that "pops up" a frontend. Only difference is the need to mount some x11 directorties with
hosts for Docker but Docker usage/tutorial is out of the scope of this article.

About Comet example, there are some quotes errors in text (text editor related) and a few missing
space. We will fix this, thanks for pointing to that error

Competing Interests: No competing interests were disclosed.

Comments on this article

olivier sallou, University of Rennes 1, France

Hi,

regarding test data, if small, we ask user to include them along container in git repository.

However, data persistence is indeed a global issue in science. For larger data, they should be available via
a data management plan linked to the upstream tool/databases.

About quality, biocontainers recommendations do not improve the quality of the tool itself, but their usage
by other users forcing some tags (version, no latest tag) and information (license, ..). With this, user
execute a known and fixed version of a tool, and will refer to this exact same version in his
communications/research.

It also enforces resulting quality because a tagged container will run the same way on any computer and
using the same libraries version (software one but also system ones and dependencies).

Page 14 of 16

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

We expect this way to increase the quality of the resulting data and research, increasing the quality of the
software itself is not the scope of this article (but would be needed for many software...)

Competing Interests: No competing interests were disclosed.

Reader Comment 21 Jun 2018
Rowland Mosbergen, ARDC, Australia

| think this is a great article, but | have two minor points about the comments around quality and the data
around the functional tests.

The three places were quality is mentioned says the following.

They are aimed to guide developers, organisations, journals and funders to increase the quality and
sustainability of research software.

This manuscript describes a core set of recommendations and guidelines to improve the quality and
sustainability of research software based on software packages and containers.

This manuscript promotes and encourages the adoption of package and container technologies to improve
the quality and reusability of research software.

In my opinion, the only place where quality is highlighted is in Recommendation 7. Recommendation 7 is
mainly about packaging functional tests (I would call them regression tests) to ensure the output is
consistent with what the developer originally tested against. | agree that regression tests help to maintain
the quality of the outputs, but | think it's not quite accurate to say that it improves the quality of research
software. For example, poor quality software, that is buggy, slow or inaccurate will not have it's quality
improved by providing a regression test.

The other minor point is that the regression test relies on the data being stored external to the container as
highlighted in Recommendation 5, and rightly so. This puts the onus on the user being able to download
the data, and for the data to be still available at the URL specified.

If the data needed doesn't have a persistent URL, or the website is down and is separate to the place
where the container is accessible from, then the regression test is essentially useless. | think it would be
useful to have regression datasets bundled at the same location in the same repository as the containers
themselves.

Competing Interests: | have no competing interests.

Page 15 of 16

FIOOOResearch F1000Research 2019, 7(ELIXIR):742 Last updated: 09 APR 2020

The benefits of publishing with F1000Research:

® Your article is published within days, with no editorial bias

® You can publish traditional articles, null/negative results, case reports, data notes and more
® The peer review process is transparent and collaborative

® Your article is indexed in PubMed after passing peer review

® Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com F-KmResea rCh

Page 16 of 16

