P. Kaye and P. Scott, Leishmaniasis: Complexity at the host-pathogen interface, Nat. Rev. Microbiol, vol.9, pp.604-615, 2011.

P. Scott and F. O. Novais, Cutaneous leishmaniasis: Immune responses in protection and pathogenesis, Nat. Rev. Immunol, vol.16, pp.581-592, 2016.

F. Chappuis, S. Sundar, A. Hailu, H. Ghalib, S. Rijal et al., Visceral leishmaniasis: What are the needs for diagnosis, treatment and control?, Nat. Rev. Microbiol, vol.5, pp.873-882, 2007.

A. Oryan and M. Akbari, Worldwide risk factors in leishmaniasis. Asian Pac, J. Trop. Med, vol.9, pp.925-932, 2016.

P. E. Parham, J. Waldock, G. K. Christophides, D. Hemming, F. Agusto et al., Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.370, 2015.

J. N. Sangshetti, F. A. Kalam-khan, A. A. Kulkarni, R. Arote, and R. H. Patil, Antileishmanial drug discovery: Comprehensive review of the last 10 years, RSC Adv, vol.5, pp.32376-32415, 2015.

E. Calvo-alvarez, K. Stamatakis, C. Punzon, R. Alvarez-velilla, A. Tejeria et al., Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis, PLoS Negl. Trop. Dis, vol.9, 2015.

N. Fatima, S. Muhammad, A. Mumtaz, H. Tariq, I. Shahzadi et al., Fungal metabolites and Leishmaniasis: A review, Br. J. Pharm. Res, vol.12, pp.1-12, 2016.

N. Shakya, P. Bajpai, and S. Gupta, Therapeutic switching in leishmania chemotherapy: A distinct approach towards unsatisfied treatment needs, J. Parasitic Dis, vol.35, pp.104-112, 2011.

M. Rama, N. V. Kumar, and S. Balaji, A comprehensive review of patented antileishmanial agents, Pharm. Patent Anal, vol.4, pp.37-56, 2015.

S. Sundar and J. Chakravarty, Antimony toxicity, Int. J. Environ. Res. Public Health, vol.7, pp.4267-4277, 2010.

G. M. Welay, K. A. Alene, and B. A. Dachew, Visceral leishmaniasis treatment outcome and its determinants in northwest Ethiopia, Epidemiol. Health, 2016.

S. L. Croft and P. Olliaro, Leishmaniasis chemotherapy-challenges and opportunities, Clin. Microbiol. Infect, vol.17, pp.1478-1483, 2011.

K. Van-bocxlaer, D. Caridha, C. Black, B. Vesely, S. Leed et al., IJP: Drugs Drug Resist, vol.11, pp.129-138, 2019.

M. Van-den-kerkhof, D. Mabille, E. Chatelain, C. E. Mowbray, S. Braillard et al., In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series, IJP: Drugs Drug Resist, vol.8, pp.81-86, 2018.

T. R. Holzer, W. R. Mcmaster, and J. D. Forney, Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana, Mol. Biochem. Parasitol, vol.146, pp.198-218, 2006.

P. Pescher, T. Blisnick, P. Bastin, and G. F. Spath, Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation, Cell. Microbiol, vol.13, pp.978-991, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01433560

Q. Li, Y. Zhao, B. Ni, C. Yao, Y. Zhou et al., Comparison of the expression profiles of promastigotes and axenic amastigotes in Leishmania donovani using serial analysis of gene expression, Parasitol. Res, vol.103, pp.821-828, 2008.

N. Aulner, A. Danckaert, E. Rouault-hardoin, J. Desrivot, O. Helynck et al., High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: Application to anti-leishmanial drug discovery, PLoS Negl. Trop
URL : https://hal.archives-ouvertes.fr/pasteur-01433415

S. Lamotte, N. Aulner, G. F. Spath, and E. Prina, Discovery of novel hit compounds with broad activity against visceral and cutaneous Leishmania species by comparative phenotypic screening, Sci. Rep, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02017484

I. Pena, M. Pilar-manzano, J. Cantizani, A. Kessler, J. Alonso-padilla et al., New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: An open resource, Sci. Rep, vol.5, 2015.

J. L. Siqueira-neto, S. Moon, J. Jang, G. Yang, C. Lee et al., An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages, PLoS Negl. Trop. Dis, vol.6, 1671.
URL : https://hal.archives-ouvertes.fr/pasteur-00850256

G. De-muylder, K. K. Ang, S. Chen, M. R. Arkin, J. C. Engel et al., A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit, PLoS Negl. Trop. Dis, 1253.

K. P. Chang and D. M. Dwyer, Multiplication of a human parasite (Leishmania donovani) in phagolysosomes of hamster macrophages in vitro, Science, vol.193, pp.678-680, 1976.

K. P. Chang, D. M. Dwyer, and . Leishmania, Hamster macrophage interactions in vitro: Cell entry, intracellular survival, and multiplication of amastigotes, J. Exp. Med, vol.147, pp.515-530, 1978.

R. L. Berens, J. J. Marr, D. J. Nelson, and S. W. Lafon, Antileishmanial effect of allopurinol and allopurinol ribonucleoside on intracellular forms of Leishmania donovani, Biochem. Pharm, vol.29, pp.2397-2398, 1980.

R. A. Neal and S. L. Croft, An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani, J. Antimicrob. Chemother, vol.14, pp.463-475, 1984.

M. Vermeersch, R. I. Da-luz, K. Tote, J. P. Timmermans, P. Cos et al., In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: Practical relevance of stage-specific differences, Antimicrob. Agents Chemother, vol.53, pp.3855-3859, 2009.

A. Gebre-hiwot, G. Tadesse, S. L. Croft, and D. Frommel, An in vitro model for screening antileishmanial drugs: The human leukaemia monocyte cell line, THP-1, Acta trop, vol.51, pp.237-245, 1992.

M. De-rycker, I. Hallyburton, J. Thomas, L. Campbell, S. Wyllie et al., Comparison of a high-throughput high-content intracellular Leishmania donovani assay with an axenic amastigote assay, Antimicrob. Agents Chemother, vol.57, pp.2913-2922, 2013.

M. J. Dagley, E. C. Saunders, K. J. Simpson, and M. J. Mcconville, High-content assay for measuring intracellular growth of Leishmania in human macrophages, Assay Drug Dev. Technol, vol.13, pp.389-401, 2015.

B. Zulfiqar, A. J. Jones, M. L. Sykes, T. B. Shelper, R. A. Davis et al., Screening a natural product-based library against kinetoplastid parasites, vol.22, 1715.

H. N. Corman, D. A. Shoue, B. Norris-mullins, B. J. Melancon, M. A. Morales et al., Development of a target-free high-throughput screening platform for the discovery of antileishmanial compounds, Int. J. Antimicrob. Agents, vol.54, pp.496-501, 2019.

I. Roquero, J. Cantizani, I. Cotillo, M. P. Manzano, A. Kessler et al., Novel chemical starting points for drug discovery in leishmaniasis and Chagas disease, IJP: Drugs Drug Resist, vol.10, pp.58-68, 2019.

K. Seifert, P. Escobar, and S. L. Croft, In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent, J. Antimicrob. Chemother, vol.65, pp.508-511, 2010.

A. Hefnawy, J. Cantizani, I. Pena, P. Manzano, S. Rijal et al., Importance of secondary screening with clinical isolates for anti-leishmania drug discovery, Sci. Rep, 2018.

S. Hendrickx, L. Van-bockstal, G. Caljon, and L. Maes, In-depth comparison of cell-based methodological approaches to determine drug susceptibility of visceral Leishmania isolates, PLoS Negl. Trop. Dis, vol.13, p.7885, 2019.

T. Lang, R. Hellio, P. M. Kaye, and J. C. Antoine, Leishmania donovani-infected macrophages: Characterization of the parasitophorous vacuole and potential role of this organelle in antigen presentation, J. Cell Sci, vol.107, pp.2137-2150, 1994.

A. Debrabant, M. B. Joshi, P. F. Pimenta, and D. M. Dwyer, Generation of Leishmania donovani axenic amastigotes: Their growth and biological characteristics, Int. J. Parasitol, vol.34, pp.205-217, 2004.

H. L. Callahan, I. F. Portal, S. J. Bensinger, and M. Grogl, Leishmania spp: Temperature sensitivity of promastigotes in vitro as a model for tropism in vivo, Exp. Parasitol, vol.84, pp.400-409, 1996.

N. Courret, C. Frehel, N. Gouhier, M. Pouchelet, E. Prina et al., Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites, J. Cell Sci, vol.115, pp.2303-2316, 2002.

J. K. Verma, R. Rastogi, and A. Mukhopadhyay, Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494, PLoS Pathog, vol.13, 2017.

M. Koniordou, S. Patterson, S. Wyllie, and K. Seifert, Snapshot Profiling of the Antileishmanial potency of lead compounds and drug candidates against intracellular Leishmania donovani amastigotes, with a focus on human-serived host cells, Antimicrob. Agents Chemother, vol.61, pp.1228-1244, 2017.

S. Sundar and A. Singh, Chemotherapeutics of visceral leishmaniasis: Present and future developments, Parasitology, vol.145, pp.481-489, 2018.

V. H. Hodgkinson, L. Soong, S. M. Duboise, and D. Mcmahon-pratt, Leishmania amazonensis: Cultivation and characterization of axenic amastigote-like organisms, Exp. Parasitol, vol.83, pp.94-105, 1996.

M. M. Chan, J. C. Bulinski, K. P. Chang, and D. Fong, A microplate assay for Leishmania amazonensis promastigotes expressing multimeric green fluorescent protein, Parasitol. Res, vol.89, pp.266-271, 2003.

D. Sereno and J. L. Lemesre, Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents, Antimicrob. Agents Chemother, vol.41, pp.972-976, 1997.

;. Ravinder and . Bhaskar,

S. Gangwar and N. Goyal, Development of luciferase expressing Leishmania donovani axenic amastigotes as primary model for in vitro screening of antileishmanial compounds, Curr. Microbiol, vol.65, pp.696-700, 2012.

T. Lang, S. Goyard, M. Lebastard, and G. Milon, Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice, Cell. Microbiol, vol.7, pp.383-392, 2005.

J. J. Perez-cordero, J. Sanchez-suarez, and G. Delgado, Use of a fluorescent stain for evaluating in vitro infection with Leishmania panamensis, Exp. Parasitol, vol.129, pp.31-35, 2011.

G. Bringmann, K. Thomale, S. Bischof, C. Schneider, M. Schultheis et al., A novel Leishmania major amastigote assay in 96-well format for rapid drug screening and its use for discovery and evaluation of a new class of leishmanicidal quinolinium salts, Antimicrob. Agents Chemother, vol.57, pp.3003-3011, 2013.

D. Tegazzini, R. Diaz, F. Aguilar, I. Pena, J. L. Presa et al., A Replicative in vitro assay for drug discovery against Leishmania donovani, Antimicrob. Agents Chemother, vol.60, pp.3524-3532, 2016.

N. Ueno and M. E. Wilson, Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival, Trends Parasitol, vol.28, pp.335-344, 2012.

E. Mougneau, F. Bihl, and N. Glaichenhaus, Cell biology and immunology of Leishmania, Immunol. Rev, vol.240, pp.286-296, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00726034

J. Weischenfeldt and B. Porse, Bone marrow-derived macrophages (BMM): Isolation and applications, Cold Spring Harb. Protoc, vol.3, pp.1-6, 2008.

W. Chanput, J. J. Mes, and H. J. Wichers, THP-1 cell line: An in vitro cell model for immune modulation approach, Int. Immunopharm, vol.23, pp.37-45, 2014.

J. Auwerx, The human leukemia cell line, THP-1: A multifacetted model for the study of monocyte-macrophage differentiation, Experientia, vol.47, pp.22-31, 1991.

B. A. Pereira and C. R. Alves, Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Veter. Parasitol, vol.158, pp.239-255, 2008.

L. Maes, J. Beyers, A. Mondelaers, M. Van-den-kerkhof, E. Eberhardt et al., In vitro 'time-to-kill' assay to assess the cidal activity dynamics of current reference drugs against Leishmania donovani and Leishmania infantum, J. Antimicrob. Chemother, vol.72, pp.428-430, 2017.

P. Prieto-barja, P. Pescher, G. Bussotti, F. Dumetz, H. Imamura et al., Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani, Nat. Ecol. Evol, vol.1, pp.1961-1969, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02107201

F. M. Marim, T. N. Silveira, D. S. Lima, . Jr, and D. S. Zamboni, A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells, PLoS ONE, vol.5, 2010.