A. Barral, E. A. Petersen, D. L. Sacks, and F. A. Neva, Late metastatic Leishmaniasis in the mouse. A model for mucocutaneous disease, American Journal of Tropical Medicine & Hygiene, vol.32, pp.277-285, 1983.

H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia, Advances in leishmaniasis, Lancet, vol.366, pp.1561-1577, 2005.

F. T. Silveira, R. Lainson, J. J. Shaw, D. Souza, A. A. Ishikawa et al., Cutaneous leishmaniasis due to Leishmania (Leishmania) amazonensis in Amazonian Brazil, and the significance of a negative Montenegro skin-test in human infections, Trans R Soc Trop Med Hyg, vol.85, pp.735-738, 1991.

L. C. Afonso and P. Scott, Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis, Infect Immun, vol.61, pp.2952-2959, 1993.

N. Courret, T. Lang, G. Milon, and J. C. Antoine, Intradermal inoculations of low doses of Leishmania major and Leishmania amazonensis metacyclic promastigotes induce different immunoparasitic processes and status of protection in BALB/c mice, Int J Parasitol, vol.33, pp.1373-1383, 2003.

D. E. Jones, L. U. Buxbaum, and P. Scott, IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection, J Immunol, vol.165, pp.364-372, 2000.

L. Soong, C. H. Chang, J. Sun, B. J. Longley, J. Ruddle et al., Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection, J Immunol, vol.158, pp.5374-5383, 1997.

L. Soong, J. C. Xu, I. S. Grewal, P. Kima, and J. Sun, Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection, Immunity, vol.4, pp.263-273, 1996.

S. G. Reed, Z. A. Andrade, S. B. Roters, J. A. Inverso, and M. Sadigursky, Leishmania mexicana amazonensis infections in 'resistant' inbred mice following removal of the draining lymph node, Clin Exp Immunol, vol.64, pp.8-13, 1986.

J. C. Antoine, E. Prina, N. Courret, and T. Lang, Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts, Adv Parasitol, vol.58, pp.1-68, 2004.

T. Baldwin, S. Henri, J. Curtis, M. O'keeffe, and D. Vremec, Dendritic cell populations in *Leishmania* major-infected skin and draining lymph nodes, Infection and Immunity, vol.72, 1991.

N. Brewig, A. Kissenpfennig, B. Malissen, A. Veit, and T. Bickert, Priming of CD8+ and CD4+ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes, J Immunol, vol.182, pp.774-783, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407769

A. C. Misslitz, K. Bonhagen, D. Harbecke, C. Lippuner, and T. Kamradt, Two waves of antigen-containing dendritic cells in vivo in experimental Leishmania major infection, Eur J Immunol, vol.34, pp.715-725, 2004.

N. C. Peters, J. G. Egen, N. Secundino, A. Debrabant, and N. Kimblin, In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies, Science, vol.321, pp.970-974, 2008.

L. Soong, Modulation of dendritic cell function by Leishmania parasites, J Immunol, vol.180, pp.4355-4360, 2008.

T. Lang, H. Lecoeur, and E. Prina, Imaging Leishmania development in their host cells, Trends Parasitol, vol.25, pp.464-473, 2009.

H. Lecoeur, E. De-la-llave, Y. Osorio, S. Goyard, and H. Kiefer-biasizzo, Sorting of Leishmania-bearing dendritic cells reveals subtle parasiteinduced modulation of host-cell gene expression, Microbes Infect, vol.12, pp.46-54, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02794034

E. Prina, S. Z. Abdi, M. Lebastard, E. Perret, and N. Winter, Dendritic cells as host cells for the promastigote and amastigote stages of Leishmania amazonensis: the role of opsonins in parasite uptake and dendritic cell maturation, J Cell Sci, vol.117, pp.315-325, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682017

I. Méderlé, I. Bourguin, D. Ensergueix, E. Badell, and J. Moniz-peireira, Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: Impact on in vivo antigen persistence and immune responses, Infection and Immunity, vol.70, pp.303-314, 2002.

H. Lecoeur, E. De-la-llave, Y. Osorio, J. Fortéa, S. Goyard et al., Sorting of Leishmania-bearing dendritic cells reveals subtle parasiteinduced modulation of host-cell gene expression, Microbes and Infection, vol.12, pp.46-54, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02794034

E. De-la-llave, H. Lecoeur, A. Besse, G. Milon, and E. Prina, A combined luciferase imaging and reverse transcription polymerase chain reaction assay for the study of Leishmania amastigote burden and correlated mouse tissue transcript fluctuations, Cell Microbiol, vol.13, pp.81-91, 2011.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, pp.185-193, 2003.

N. Jain, J. Thatte, T. Braciale, K. Ley, O. Connell et al., Local-poolederror test for identifying differentially expressed genes with a small number of replicated microarrays, Bioinformatics, vol.19, pp.1945-1951, 2003.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate -a Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society Series B-Methodological, vol.57, pp.289-300, 1995.

J. Hellemans, G. Mortier, A. De-paepe, F. Speleman, and J. Vandesompele, qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biol, vol.8, p.19, 2007.

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

C. L. Andersen, J. L. Jensen, and T. F. Orntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res, vol.64, pp.5245-5250, 2004.

E. Prina, E. Roux, D. Mattei, and G. Milon, Leishmania DNA is rapidly degraded following parasite death: an analysis by microscopy and real-time PCR, Microbes Infect, vol.9, pp.1307-1315, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00181350

T. F. Deuel, R. M. Senior, D. Chang, G. L. Griffin, and R. L. Heinrikson, Platelet factor 4 is chemotactic for neutrophils and monocytes, Proc Natl Acad Sci U S A, vol.78, pp.4584-4587, 1981.

K. Muller, G. Van-zandbergen, B. Hansen, H. Laufs, and N. Jahnke, Chemokines, natural killer cells and granulocytes in the early course of Leishmania major infection in mice, Med Microbiol Immunol, vol.190, pp.73-76, 2001.

L. Gu, B. Rutledge, J. Fiorillo, C. Ernst, and I. Grewal, In vivo properties of monocyte chemoattractant protein-1, J Leukoc Biol, vol.62, pp.577-580, 1997.

N. V. Serbina, T. Jia, T. M. Hohl, and E. G. Pamer, Monocyte-mediated defense against microbial pathogens, Annu Rev Immunol, vol.26, pp.421-452, 2008.

A. Churg, R. D. Wang, H. Tai, X. Wang, and C. Xie, Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse, Am J Respir Crit Care Med, vol.170, pp.492-498, 2004.

S. Nenan, E. Boichot, V. Lagente, and C. P. Bertrand, Macrophage elastase (MMP-12): a pro-inflammatory mediator?, Mem Inst Oswaldo Cruz, vol.100, pp.167-172, 2005.

U. Schonbeck, F. Mach, and P. Libby, Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing, J Immunol, vol.161, pp.3340-3346, 1998.

W. H. Yu, J. F. Woessner, and J. , Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7), J Biol Chem, vol.275, pp.4183-4191, 2000.

S. Stutte, T. Quast, N. Gerbitzki, T. Savinko, and N. Novak, Requirement of CCL17 for CCR7-and CXCR4-dependent migration of cutaneous dendritic cells, Proc Natl Acad Sci U S A, vol.107, pp.8736-8741, 2010.

F. Sallusto, B. Palermo, D. Lenig, M. Miettinen, and S. Matikainen, Distinct patterns and kinetics of chemokine production regulate dendritic cell function, Eur J Immunol, vol.29, pp.1617-1625, 1999.

F. Jimenez, M. P. Quinones, H. G. Martinez, C. A. Estrada, and K. Clark, CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B, J Immunol, vol.184, pp.5571-5581, 2010.

G. Ratzinger, P. Stoitzner, S. Ebner, M. B. Lutz, and G. T. Layton, Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin, J Immunol, vol.168, pp.4361-4371, 2002.

L. Salogni, T. Musso, D. Bosisio, M. Mirolo, and V. R. Jala, Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14, Blood, vol.113, pp.5848-5856, 2009.

G. V. Shurin, R. L. Ferris, I. L. Tourkova, L. Perez, and A. Lokshin, Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo, J Immunol, vol.174, pp.5490-5498, 2005.

T. Lammermann, J. Renkawitz, X. Wu, K. Hirsch, and C. Brakebusch, Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration, Blood, vol.113, pp.5703-5710, 2009.

T. Dubois and P. Chavrier, , 2005.

, Med Sci (Paris), vol.21, pp.692-694

K. P. Van-gisbergen, I. S. Ludwig, T. B. Geijtenbeek, and Y. Van-kooyk, Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils, FEBS Lett, vol.579, pp.6159-6168, 2005.

T. B. Geijtenbeek, D. J. Krooshoop, D. A. Bleijs, S. J. Van-vliet, and G. C. Van-duijnhoven, DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking, Nat Immunol, vol.1, pp.353-357, 2000.

K. Kabashima, K. Sugita, N. Shiraishi, H. Tamamura, and N. Fujii, CXCR4 engagement promotes dendritic cell survival and maturation, Biochem Biophys Res Commun, vol.361, pp.1012-1016, 2007.

M. Guimond, R. G. Veenstra, D. J. Grindler, H. Zhang, and Y. Cui, Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells, Nat Immunol, vol.10, pp.149-157, 2009.

R. M. Kondrack, J. Harbertson, J. T. Tan, M. E. Mcbreen, and C. D. Surh, Interleukin 7 regulates the survival and generation of memory CD4 cells, J Exp Med, vol.198, pp.1797-1806, 2003.

B. Seddon, P. Tomlinson, and R. Zamoyska, Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells, Nat Immunol, vol.4, pp.680-686, 2003.

J. T. Tan, E. Dudl, E. Leroy, R. Murray, and J. Sprent, IL-7 is critical for homeostatic proliferation and survival of naive T cells, Proc Natl Acad Sci U S A, vol.98, pp.8732-8737, 2001.

K. S. Schluns, W. C. Kieper, S. C. Jameson, and L. Lefrancois, Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo, Nat Immunol, vol.1, pp.426-432, 2000.

K. Sato, K. Eizumi, T. Fukaya, S. Fujita, and Y. Sato, Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease, Blood, vol.113, pp.4780-4789, 2009.

N. Ishii, T. Takahashi, P. Soroosh, and K. Sugamura, OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology, Adv Immunol, vol.105, pp.63-98, 2010.

T. B. Geijtenbeek, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven, and G. J. Adema, Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses, Cell, vol.100, pp.575-585, 2000.

J. Kim, S. La, B. S. Kim, B. S. Kwon, and B. Kwon, Newly identified [correction of dentified] members of the TNF receptor superfamily (mTNFRH1 and mTNFRH2) inhibit T-cell proliferation, Exp Mol Med, vol.35, pp.154-159, 2003.

R. I. Nurieva, X. M. Mai, K. Forbush, M. J. Bevan, and C. Dong, B7h is required for T cell activation, differentiation, and effector function, Proc Natl Acad Sci U S A, vol.100, pp.14163-14168, 2003.