M. Alexander, M. Gerauer, M. Pechlivanis, B. Popkirova, R. Dvorsky et al., Mapping the isoprenoid binding pocket of PDE? by a semisynthetic, photoactivatable N-Ras lipoprotein, ChemBioChem, vol.10, pp.98-108, 2009.

A. Altenfeld, S. Wohlgemuth, A. Wehenkel, I. R. Vetter, and A. Musacchio, Complex assembly, crystallization and preliminary X-ray crystallographic analysis of the human Rod-Zwilch-ZW10 (RZZ) complex, Acta Crystallogr. F Struct. Biol. Commun, vol.71, pp.438-442, 2015.

H. R. Ashar, L. James, K. Gray, D. Carr, S. Black et al., Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules, J. Biol. Chem, vol.275, pp.30451-30457, 2000.

M. Barisic, B. Sohm, P. Mikolcevic, C. Wandke, V. Rauch et al., Spindly/CCDC99 is required for efficient chromosome congression and mitotic checkpoint regulation, Mol. Biol. Cell, vol.21, pp.1968-1981, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02087746

R. Basto, R. Gomes, and R. E. Karess, Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila, Nat. Cell Biol, vol.2, pp.939-943, 2000.

R. Basto, F. Scaerou, S. Mische, E. Wojcik, C. Lefebvre et al., In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis, Curr. Biol, vol.14, p.25, 2003.

C. Bröcker, A. Kuhlee, C. Gatsogiannis, H. J. Balderhaar, C. Hönscher et al., Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex, Proc. Natl. Acad. Sci. USA, vol.109, 1991.

S. G. Brohawn, N. C. Leksa, E. D. Spear, K. R. Rajashankar, and T. U. Schwartz, Structural evidence for common ancestry of the nuclear pore complex and vesicle coats, Science, vol.322, pp.1369-1373, 2008.

P. H. Brown and P. Schuck, Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation, Biophys. J, vol.90, pp.4651-4661, 2006.

E. Buffin, C. Lefebvre, J. Huang, M. E. Gagou, and R. E. Karess, , 2005.

, Curr. Biol, vol.15, pp.856-861

G. V. Caldas, T. R. Lynch, R. Anderson, S. Afreen, D. Varma et al., The RZZ complex requires the N-terminus of KNL1 to mediate optimal Mad1 kinetochore localization in human cells, Open Biol, vol.5, p.150160, 2015.

A. P. Carter, A. G. Diamant, and L. Urnavicius, How dynein and dynactin transport cargos: a structural perspective, Curr. Opin. Struct. Biol, vol.37, pp.62-70, 2016.

Y. W. Chan, L. L. Fava, A. Uldschmid, M. H. Schmitz, D. W. Gerlich et al., Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly, J. Cell Biol, vol.185, pp.859-874, 2009.

D. K. Cheerambathur, R. Gassmann, B. Cook, K. Oegema, and A. Desai, Crosstalk between microtubule attachment complexes ensures accurate chromosome segregation, Science, vol.342, pp.1239-1242, 2013.

S. Chowdhury, S. A. Ketcham, T. A. Schroer, and G. C. Lander, Structural organization of the dynein-dynactin complex bound to microtubules, Nat. Struct. Mol. Biol, vol.22, pp.345-347, 2015.

M. A. Cianfrocco, M. E. Desantis, A. E. Leschziner, and S. L. Reck-peterson, Mechanism and regulation of cytoplasmic dynein, Annu. Rev. Cell Dev. Biol, vol.31, pp.83-108, 2015.

F. Çivril, A. Wehenkel, F. M. Giorgi, S. Santaguida, A. D. Fonzo et al., Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery, Structure, vol.18, pp.616-626, 2010.

C. A. Cooke, B. Schaar, T. J. Yen, and W. C. Earnshaw, Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase, Chromosoma, vol.106, pp.446-455, 1997.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

S. Fath, J. D. Mancias, X. Bi, and J. Goldberg, Structure and organization of coat proteins in the COP II cage, Cell, vol.129, pp.1325-1336, 2007.

A. Fotin, Y. Cheng, P. Sliz, N. Grigorieff, S. C. Harrison et al., Molecular model for a complete clathrin lattice from electron cryomicroscopy, Nature, vol.432, pp.573-579, 2004.

R. Gassmann, A. Essex, J. S. Hu, P. S. Maddox, F. Motegi et al., A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex, Genes Dev, vol.22, pp.2385-2399, 2008.

R. Gassmann, A. J. Holland, D. Varma, X. Wan, F. Çivril et al., Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells, Genes Dev, vol.24, pp.957-971, 2010.

E. R. Griffis, N. Stuurman, and R. D. Vale, Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore, J. Cell Biol, vol.177, pp.1005-1015, 2007.

Y. Hashimoto, S. Zhang, S. Zhang, Y. R. Chen, and G. W. Blissard, Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins, BMC Biotechnol, vol.12, p.12, 2012.

F. Herzog, A. Kahraman, D. Boehringer, R. Mak, A. Bracher et al., Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry, Science, vol.337, pp.1348-1352, 2012.

D. B. Hoffman, C. G. Pearson, T. J. Yen, B. J. Howell, and E. D. Salmon, Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores, 2001.

, Mol. Biol. Cell, vol.12, 1995.

G. R. Hoffman, N. Nassar, and R. A. Cerione, Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI, Cell, vol.100, pp.80670-80674, 2000.

M. Hohn, G. Tang, G. Goodyear, P. R. Baldwin, Z. Huang et al., SPA RX, a new environment for Cryo-EM image processing, J. Struct. Biol, vol.157, pp.47-55, 2007.

A. J. Holland, R. M. Reis, S. Niessen, C. Pereira, D. A. Andres et al., Preventing farnesylation of the dynein adaptor Spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors, Mol. Biol. Cell, vol.26, pp.1845-1856, 2015.

C. C. Hoogenraad and A. Akhmanova, Bicaudal D family of motor adaptors: linking dynein motility to cargo binding, Trends Cell Biol, vol.26, pp.327-340, 2016.

B. J. Howell, B. F. Mcewen, J. C. Canman, D. B. Hoffman, E. M. Farrar et al., Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation, J. Cell Biol, vol.155, pp.1159-1172, 2001.

D. Hussein and S. S. Taylor, Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis, J. Cell Sci, vol.115, pp.3403-3414, 2002.

S. A. Ismail, Y. X. Chen, A. Rusinova, A. Chandra, M. Bierbaum et al., Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo, Nat. Chem. Biol, vol.7, pp.942-949, 2011.

L. P. Jackson, Structure and mechanism of COPI vesicle biogenesis, Curr. Opin. Cell Biol, vol.29, pp.67-73, 2014.

P. T. Jokelainen, The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells, J. Ultrastruct. Res, vol.19, issue.67, pp.80058-80061, 1967.

J. R. Kardon and R. D. Vale, Regulators of the cytoplasmic dynein motor, Nat. Rev. Mol. Cell Biol, vol.10, pp.854-865, 2009.

R. Karess, Rod-Zw10-Zwilch: a key player in the spindle checkpoint, Trends Cell Biol, vol.15, pp.386-392, 2005.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

G. J. Kops, Y. Kim, B. A. Weaver, Y. Mao, I. Mcleod et al., ZW10 links mitotic checkpoint signaling to the structural kinetochore, J. Cell Biol, vol.169, pp.49-60, 2005.

J. Kuhlmann, A. Tebbe, M. Völkert, M. Wagner, K. Uwai et al., Photoactivatable synthetic Ras proteins: "baits" for the identification of plasma-membrane-bound binding partners of Ras, 2002.

, Angew. Chem. Int. Ed. Engl, vol.41, pp.2546-2550, 20020715.

C. Lee and J. Goldberg, Structure of coatomer cage proteins and the relationship among COPI, COP II, and clathrin vesicle coats, Cell, vol.142, pp.123-132, 2010.

X. Li, P. Mooney, S. Zheng, C. R. Booth, M. B. Braunfeld et al., Electron counting and beam-induced motion correction enable near-atomic-resolution single, 2013.

, Nat. Methods, vol.10, pp.584-590

S. J. Ludtke, 3-D structures of macromolecules using single-particle analysis in EMAN, Methods Mol. Biol, vol.673, pp.157-173, 2010.

A. Lupas, M. Van-dyke, and J. Stock, Predicting coiled coils from protein sequences, Science, vol.252, pp.1162-1164, 1991.

V. Magidson, R. Paul, N. Yang, J. G. Ault, C. B. O'connell et al., Adaptive changes in the kinetochore architecture facilitate proper spindle assembly, Nat. Cell Biol, vol.17, pp.1134-1144, 2015.

S. Martin-lluesma, V. M. Stucke, and E. A. Nigg, Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2, Science, vol.297, pp.2267-2270, 2002.

D. R. Matson and P. T. Stukenberg, CENP-I and Aurora B act as a molecular switch that ties RZZ/Mad1 recruitment to kinetochore attachment status, J. Cell Biol, vol.205, pp.541-554, 2014.

B. F. Mcewen, J. T. Arena, J. Frank, and C. L. Rieder, Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography, J. Cell Biol, vol.120, pp.301-312, 1993.

R. J. Mckenney, W. Huynh, M. E. Tanenbaum, G. Bhabha, and R. D. Vale, Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes, Science, vol.345, pp.337-341, 2014.

H. T. Mcmahon and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol, vol.12, pp.517-533, 2011.

S. A. Miller, M. L. Johnson, and P. T. Stukenberg, Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80 Hec1, Curr. Biol, vol.18, pp.1785-1791, 2008.

S. Mische, Y. He, L. Ma, M. Li, M. Serr et al., Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation, Mol. Biol. Cell, vol.19, pp.4918-4929, 2008.

D. K. Moudgil, N. Westcott, J. K. Famulski, K. Patel, D. Macdonald et al., A novel role of farnesylation in targeting a mitotic checkpoint protein, human Spindly, to kinetochores, J. Cell Biol, vol.208, pp.881-896, 2015.

A. Musacchio, The molecular biology of spindle assembly checkpoint signaling dynamics, Curr. Biol, vol.25, p.3017, 2015.

U. T. Nguyen, J. Cramer, J. Gomis, R. Reents, M. Gutierrez-rodriguez et al., Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization, ChemBioChem, vol.8, pp.408-423, 2007.

S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen et al., Stable isotope labeling by amino acids in cell culture, SIL AC, as a simple and accurate approach to expression proteomics, Mol. Cell. Proteomics, vol.1, pp.376-386, 2002.

M. E. Pesenti, J. R. Weir, and A. Musacchio, Progress in the structural and functional characterization of kinetochores, Curr. Opin. Struct. Biol, vol.37, pp.152-163, 2016.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera--a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

M. Radermacher, T. Wagenknecht, A. Verschoor, and J. Frank, Threedimensional reconstruction from a single-exposure, 1987.

, J. Microsc, vol.146, pp.113-136

A. Rak, O. Pylypenko, T. Durek, A. Watzke, S. Kushnir et al., Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase, Science, vol.302, pp.646-650, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02349772

J. Rappsilber, M. Mann, and Y. Ishihama, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protoc, vol.2, pp.1896-1906, 2007.

C. L. Rieder and S. P. Alexander, Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells, J. Cell Biol, vol.110, pp.81-95, 1990.

P. Riou, S. Kjaer, R. Garg, A. Purkiss, R. George et al., 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins, Cell, vol.153, pp.640-653, 2013.

C. Russell and S. M. Stagg, New insights into the structural mechanisms of the COP II coat, Traffic, vol.11, pp.303-310, 2010.

I. Samejima, C. Spanos, F. L. Alves, T. Hori, M. Perpelescu et al., Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore, J. Cell Biol, vol.211, pp.1141-1156, 2015.

S. Santaguida, A. Tighe, A. M. D'alise, S. S. Taylor, and A. Musacchio, Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine, J. Cell Biol, vol.190, pp.73-87, 2010.

F. Scaërou, D. A. Starr, F. Piano, O. Papoulas, R. E. Karess et al., The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore, J. Cell Sci, vol.114, pp.3103-3114, 2001.

R. A. Scheltema, J. P. Hauschild, O. Lange, D. Hornburg, E. Denisov et al., The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer, Mol. Cell. Proteomics, vol.13, pp.3698-3708, 2014.

S. H. Scheres and S. Chen, Prevention of overfitting in cryo-EM structure determination, Nat. Methods, vol.9, pp.853-854, 2012.

M. A. Schlager, H. T. Hoang, L. Urnavicius, S. L. Bullock, and A. P. Carter, In vitro reconstitution of a highly processive recombinant human dynein complex, EMBO J, vol.33, pp.1855-1868, 2014.

V. Silió, A. D. Mcainsh, and J. B. Millar, KNL1-Bubs and RZZ Provide Two Separable Pathways for Checkpoint Activation at Human Kinetochores, Dev. Cell, vol.35, pp.600-613, 2015.

M. V. Sivaram, T. L. Wadzinski, S. D. Redick, T. Manna, and S. J. Doxsey, Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint, EMBO J, vol.28, pp.902-914, 2009.

J. Söding, A. Biegert, and A. N. Lupas, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res, vol.33, pp.244-248, 2005.

S. M. Stagg, C. Gürkan, D. M. Fowler, P. Lapointe, T. R. Foss et al., Structure of the Sec13/31 COP II coat cage, Nature, vol.439, pp.234-238, 2006.

S. M. Stagg, P. Lapointe, and W. E. Balch, Structural design of cage and coat scaffolds that direct membrane traffic, Curr. Opin. Struct. Biol, vol.17, pp.221-228, 2007.

D. A. Starr, B. C. Williams, T. S. Hays, and M. L. Goldberg, ZW10 helps recruit dynactin and dynein to the kinetochore, J. Cell Biol, vol.142, pp.763-774, 1998.

E. Ter-haar, A. Musacchio, S. C. Harrison, and T. Kirchhausen, Atomic structure of clathrin: a ? propeller terminal domain joins an ? zigzag linker, Cell, vol.95, pp.81623-81625, 1998.

A. Tripathi, Y. Ren, P. D. Jeffrey, and F. M. Hughson, Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex, Nat. Struct. Mol. Biol, vol.16, pp.114-123, 2009.

L. Urnavicius, K. Zhang, A. G. Diamant, C. Motz, M. A. Schlager et al., The structure of the dynactin complex and its interaction with dynein, Science, vol.347, pp.1441-1446, 2015.

D. Varma, P. Monzo, S. A. Stehman, and R. B. Vallee, Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment, J. Cell Biol, vol.182, pp.1045-1054, 2008.

T. Walzthoeni, M. Claassen, A. Leitner, F. Herzog, S. Bohn et al., False discovery rate estimation for cross-linked peptides identified by mass spectrometry, Nat. Methods, vol.9, pp.901-903, 2012.

M. Wang and P. J. Casey, Protein prenylation: unique fats make their mark on biology, Nat. Rev. Mol. Cell Biol, vol.17, pp.110-122, 2016.

J. R. Weir, A. C. Faesen, K. Klare, A. Petrovic, F. Basilico et al., Insights from biochemical reconstitution into the architecture of human kinetochores, Nature, vol.537, pp.249-253, 2016.

F. Weissmann, G. Petzold, R. Vanderlinden, P. J. Huis-in-'t-veld, N. Brown et al., biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes, Proc. Natl. Acad. Sci. USA, vol.113, pp.2564-2569, 2016.

B. C. Williams, M. Gatti, and M. L. Goldberg, Bipolar spindle attachments affect redistributions of ZW10, a Drosophila centromere/kinetochore component required for accurate chromosome segregation, J. Cell Biol, vol.134, pp.1127-1140, 1996.

B. C. Williams, Z. Li, S. Liu, E. V. Williams, G. Leung et al., Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions, Mol. Biol. Cell, vol.14, pp.1379-1391, 2003.

E. Wojcik, R. Basto, M. Serr, F. Scaërou, R. Karess et al., Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein, Nat. Cell Biol, vol.3, pp.1001-1007, 2001.

D. J. Wynne and H. Funabiki, Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components, J. Cell Biol, vol.210, pp.899-916, 2015.

T. G. Yamamoto, S. Watanabe, A. Essex, and R. Kitagawa, SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans, J. Cell Biol, vol.183, pp.187-194, 2008.

Z. Yang, J. Fang, J. Chittuluru, F. J. Asturias, and P. A. Penczek, Iterative stable alignment and clustering of 2D transmission electron microscope images, Structure, vol.20, pp.237-247, 2012.

X. Yao, K. L. Anderson, and D. W. Cleveland, The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules, J. Cell Biol, vol.139, pp.435-447, 1997.

G. Zhang, T. Lischetti, D. G. Hayward, and J. Nilsson, Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint, Nat. Commun, vol.6, p.7162, 2015.