M. R. Crull, R. Somayaji, K. J. Ramos, E. Caldwell, N. Mayer-hamblett et al., Changing Rates of Chronic Pseudomonas aeruginosa Infections in Cystic Fibrosis: A Population-Based Cohort Study, Clinical Infectious Diseases, vol.67, issue.7, pp.1089-1095, 2018.

S. S. Magill, J. R. Edwards, W. Bamberg, Z. G. Beldavs, G. Dumyati et al., Multistate Point-Prevalence Survey of Health Care?Associated Infections, New England Journal of Medicine, vol.370, issue.13, pp.1198-1208, 2014.

H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa, Frontiers in Microbiology, vol.2, p.103, 2011.

H. D. Williams, J. E. Zlosnik, and B. Ryall, Oxygen, Cyanide and Energy Generation in the Cystic Fibrosis Pathogen Pseudomonas aeruginosa, Advances in Microbial Physiology, vol.52, pp.1-71, 2006.

A. Torres, N. Kasturiarachi, M. Dupont, V. S. Cooper, J. Bomberger et al., NADH Dehydrogenases in Pseudomonas aeruginosa Growth and Virulence, Frontiers in Microbiology, vol.10, p.75, 2019.

A. C. Page, P. Gale, H. Wallick, R. B. Walton, L. E. Mcdaniel et al., Coenzyme Q. XVII. Isolation of coenzyme Q10 from bacterial fermentation, Archives of Biochemistry and Biophysics, vol.89, issue.2, pp.318-321, 1960.

K. Matsushita, M. Yamada, E. Shinagawa, O. Adachi, and M. Ameyama, Function of Ubiquinone in the Electron Transport System of Pseudomonas aeruginosa Grown Aerobically1, The Journal of Biochemistry, vol.88, issue.3, pp.757-764, 1980.

B. Nowicka and J. Kruk, Occurrence, biosynthesis and function of isoprenoid quinones, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1797, issue.9, pp.1587-1605, 2010.

L. Pelosi, C. D. Vo, S. S. Abby, L. Loiseau, B. Rascalou et al., Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway, mBio, vol.10, issue.4, p.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02183791

K. Alexander and I. G. Young, Alternative hydroxylases for the aerobic and anaerobic biosynthesis of ubiquinone in Escherichia coli, Biochemistry, vol.17, issue.22, pp.4750-4755, 1978.

M. Hajj-chehade, L. Pelosi, C. D. Fyfe, L. Loiseau, B. Rascalou et al., A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone, Cell Chemical Biology, vol.26, issue.4, pp.482-492.e7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02071798

W. G. Zumft, Cell biology and molecular basis of denitrification., Microbiology and molecular biology reviews : MMBR, vol.61, issue.4, pp.533-616, 1997.

P. Ø. Jensen, M. Kolpen, K. N. Kragh, and M. Kühl, Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response, APMIS, vol.125, issue.4, pp.276-288, 2017.

J. M. Borrero?de-acuña, K. N. Timmis, M. Jahn, and D. Jahn, Protein complex formation during denitrification byPseudomonas aeruginosa, Microbial Biotechnology, vol.10, issue.6, pp.1523-1534, 2017.

P. Stenmark, J. Grünler, J. Mattsson, P. J. Sindelar, P. Nordlund et al., A New Member of the Family of Di-iron Carboxylate Proteins, Journal of Biological Chemistry, vol.276, issue.36, pp.33297-33300, 2001.

H. X. Jiang, J. Wang, L. Zhou, Z. J. Jin, X. Q. Cao et al., Coenzyme Q biosynthesis in the biopesticide Shenqinmycin-producing Pseudomonas aeruginosa strain M18, Journal of Industrial Microbiology & Biotechnology, vol.46, issue.7, pp.1025-1038, 2019.

C. Coelho and M. J. Romão, Structural and mechanistic insights on nitrate reductases, Protein Science, vol.24, issue.12, pp.1901-1911, 2015.

M. Hajj-chehade, L. Loiseau, M. Lombard, L. Pecqueur, A. Ismail et al., ubiI,a New Gene inEscherichia coliCoenzyme Q Biosynthesis, Is Involved in Aerobic C5-hydroxylation, Journal of Biological Chemistry, vol.288, issue.27, pp.20085-20092, 2013.

L. Loiseau, C. Fyfe, L. Aussel, M. Hajj-chehade, S. B. Hernández et al., The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ, Journal of Biological Chemistry, vol.292, issue.28, pp.11937-11950, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01615493

R. Hille, M. J. Filiatrault, K. F. Picardo, H. Ngai, L. Passador et al., Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth, Arch Biochem Biophys, vol.433, pp.4237-4245, 2005.

J. A. Imlay, Iron-sulphur clusters and the problem with oxygen, Molecular Microbiology, vol.59, issue.4, pp.1073-1082, 2006.

S. Ollagnier-de-choudens and F. Barras, Genetic, Biochemical, and Biophysical Methods for Studying Fe S Proteins and Their Assembly, Methods in Enzymology, vol.595, pp.1-32, 2017.

S. Ollagnier-de-choudens, L. Loiseau, Y. Sanakis, F. Barras, and M. Fontecave, Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis, FEBS Letters, vol.579, issue.17, pp.3737-3743, 2005.

M. K. Groenewold, M. Massmig, S. Hebecker, L. Danne, Z. Magnowska et al., A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa, Biochemical Journal, vol.475, issue.11, pp.1885-1907, 2018.

W. Dowhan, MOLECULAR BASIS FOR MEMBRANE PHOSPHOLIPID DIVERSITY:Why Are There So Many Lipids?, Annual Review of Biochemistry, vol.66, issue.1, pp.199-232, 1997.

L. Aussel, F. Pierrel, L. Loiseau, M. Lombard, M. Fontecave et al., Biosynthesis and physiology of coenzyme Q in bacteria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1837, issue.7, pp.1004-1011, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077983

P. Sharma, M. J. Teixeira-de-mattos, K. J. Hellingwerf, and M. Bekker, On the function of the various quinone species inEscherichia coli, FEBS Journal, vol.279, issue.18, pp.3364-3373, 2012.

A. Nitzschke and K. Bettenbrock, All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12, PLOS ONE, vol.13, issue.4, p.e0194699, 2018.

M. J. Filiatrault, V. E. Wagner, D. Bushnell, C. G. Haidaris, B. H. Iglewski et al., Effect of Anaerobiosis and Nitrate on Gene Expression in Pseudomonas aeruginosa, Infection and Immunity, vol.73, issue.6, pp.3764-3772, 2005.

M. Wu, T. Guina, M. Brittnacher, H. Nguyen, J. Eng et al., The Pseudomonas aeruginosa Proteome during Anaerobic Growth, Journal of Bacteriology, vol.187, issue.23, pp.8185-8190, 2005.

D. Worlitzsch, R. Tarran, M. Ulrich, U. Schwab, A. Cekici et al., Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients, J Clin Invest, vol.109, pp.317-325, 2002.

M. Kolpen, C. R. Hansen, T. Bjarnsholt, C. Moser, L. D. Christensen et al., Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis, Thorax, vol.65, issue.1, pp.57-62, 2009.

M. Kolpen, T. Bjarnsholt, C. Moser, C. R. Hansen, L. F. Rickelt et al., Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen, Clinical & Experimental Immunology, vol.177, issue.1, pp.310-319, 2014.

S. J. Linnane, V. M. Keatings, C. M. Costello, J. B. Moynihan, C. M. O'connor et al., Total Sputum Nitrate plus Nitrite Is Raised during Acute Pulmonary Infection in Cystic Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.158, issue.1, pp.207-212, 1998.

D. Skurnik, D. Roux, H. Aschard, V. Cattoir, D. Yoder-himes et al., A Comprehensive Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using High-Throughput Sequencing of Transposon Libraries, PLoS Pathogens, vol.9, issue.9, p.e1003582, 2013.

R. Navais, J. Méndez, D. Pérez-pascual, D. Cascales, and J. A. Guijarro, TheyrpABoperon ofYersinia ruckeriencoding two putative U32 peptidases is involved in virulence and induced under microaerobic conditions, Virulence, vol.5, issue.5, pp.619-624, 2014.

Y. Sakai, S. Kimura, and T. Suzuki, Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability, Nat Commun, vol.10, p.2858, 2019.

C. T. Lauhon, Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA, Journal of Bacteriology, vol.201, issue.20, 2019.

L. Aussel, L. Loiseau, M. Hajj-chehade, B. Pocachard, M. Fontecave et al., ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium, J Bacteriol, vol.196, pp.70-79, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00917119

K. Held, E. Ramage, M. Jacobs, L. Gallagher, and C. Manoil, Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1, J Bacteriol, vol.194, pp.6387-6389, 2012.

M. A. Jacobs, A. Alwood, I. Thaipisuttikul, D. Spencer, E. Haugen et al., Comprehensive transposon mutant library of Pseudomonas aeruginosa, Proceedings of the National Academy of Sciences, vol.100, issue.24, pp.14339-14344, 2003.

V. E. Wagner, D. Bushnell, L. Passador, A. I. Brooks, and B. H. Iglewski, Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment, Journal of Bacteriology, vol.185, issue.7, pp.2080-2095, 2003.

D. J. Hassett, Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen., Journal of bacteriology, vol.178, issue.24, pp.7322-7325, 1996.

J. Y. Jeong, H. S. Yim, J. Y. Ryu, H. S. Lee, J. S. Lee et al., One-Step Sequence- and Ligation-Independent Cloning as a Rapid and Versatile Cloning Method for Functional Genomics Studies, Applied and Environmental Microbiology, vol.78, issue.15, pp.5440-5443, 2012.

D. H. Figurski and D. R. Helinski, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc Natl Acad Sci U S A, vol.76, pp.1648-1652, 1979.

J. M. Kavran, D. E. Klein, A. Lee, M. Falasca, S. J. Isakoff et al., Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains, J Biol Chem, vol.273, pp.30497-30508, 1998.

W. W. Fish, Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples, Methods in enzymology, vol.158, pp.357-364, 1988.

H. Beinert, Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins, Analytical biochemistry, vol.131, pp.373-378, 1983.

A. Rietsch, I. Vallet-gely, S. L. Dove, and J. J. Mekalanos, ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa, Proc Natl Acad Sci U S A, vol.102, pp.8006-8011, 2005.

P. J. Baynham, D. M. Ramsey, B. V. Gvozdyev, E. M. Cordonnier, and D. J. Wozniak, The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili, J Bacteriol, vol.188, pp.132-140, 2006.