S. Mukhopadhyay, R. J. Kuhn, and M. G. Rossmann, A structural perspective of the flavivirus life cycle, Nature Reviews Microbiology, vol.3, pp.13-22, 2005.

M. Ludlow, J. Kortekaas, C. Herden, B. Hoffmann, D. Tappe et al., Neurotropic virus infections as the cause of immediate and delayed neuropathology, Acta Neuropathol, vol.131, p.26659576, 2015.

G. J. Sips, J. Wilschut, and J. M. Smit, Neuroinvasive flavivirus infections, Rev Med Virol, vol.22, pp.69-87, 2011.

S. , N. , M. Makielin, W. C. , and T. Bd, Susceptibility of a North American Culex quinquefasciatus to Japanese Encephalitis Virus. Vector-Borne and Zoonotic Diseases

H. Street, , vol.15, pp.709-711, 2015.

M. De-wispelaere, P. Desprès, and V. Choumet, European Aedes albopictus and Culex pipiens are Competent Vectors for Japanese Encephalitis Virus, PLoS Negl Trop Dis, vol.11, pp.5294-5313, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01453400

D. Sabatino, D. Bruno, R. Sauro, F. Danzetta, M. L. Cito et al., Epidemiology of West Nile Disease in Europe and in the Mediterranean Basin from, BioMed Research International. Hindawi Publishing Corporation, pp.1-10, 2009.

B. Pastorino, A. Nougairède, N. Wurtz, E. Gould, and X. De-lamballerie, Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs, Antiviral Research, vol.87, pp.281-294, 2010.

L. Zhang, F. Chai, H. Li, X. G. Guo, and L. , Identification of Host Proteins Involved in Japanese Encephalitis Virus Infection by Quantitative Proteomics Analysis, J Proteome Res, vol.12, pp.2666-2678, 2013.

N. Sengupta, S. Ghosh, S. V. Vasaikar, J. Gomes, and A. Basu, Modulation of Neuronal Proteome Profile in Response to Japanese Encephalitis Virus Infection, PLoS ONE. Public Library of Science, vol.9, pp.90211-90225, 2014.

B. Pastorino, E. Boucomont-chapeaublanc, C. N. Peyrefitte, M. Belghazi, T. Fusaï et al., Identification of Cellular Proteome Modifications in Response to West Nile Virus Infection, Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology, vol.8, pp.1623-1637, 2009.

C. Fraisier, L. Camoin, S. M. Lim, M. Bakli, M. Belghazi et al., Altered Protein Networks and Cellular Pathways in Severe West Nile Disease in Mice, PLoS ONE. Public Library of Science, vol.8, 2013.

H. Zhang, J. Sun, J. Ye, U. Ashraf, Z. Chen et al., Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response, J Proteome Res, vol.14, pp.5157-5168, 2015.

P. Clarke, J. S. Leser, R. A. Bowen, and K. L. Tyler, Interleukin 17 Receptor A, and Glutamate Signaling as Well as Flavivirus-Specific Upregulation of tRNA Synthetases. mBio. American Society for Microbiology, Apoptosis, vol.5, pp.902-916, 2014.

F. Mostashari, M. L. Bunning, P. T. Kitsutani, D. A. Singer, D. Nash et al., 1999: results of a household-based seroepidemiological survey, The Lancet, vol.358, pp.261-264, 2001.

M. Fischer, S. Hills, E. Staples, B. Johnson, M. Yaich et al., Japanese encephalitis prevention and control: advances, challenges, and new initiatives. Emerging, 2008.

M. Bannon, Encephalitis caused by flaviviruses, QJM, vol.105, pp.217-218, 2012.

W. W. Suen, N. A. Prow, R. A. Hall, and H. Bielefeldt-ohmann, Mechanism of West Nile virus neuroinvasion: a critical appraisal, Viruses. Multidisciplinary Digital Publishing Institute, vol.6, pp.2796-2825, 2014.

B. S. Schneider and S. Higgs, The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response, Trans R Soc Trop Med Hyg, vol.102, pp.400-408, 2008.

J. Cox, J. Mota, S. Sukupolvi-petty, M. S. Diamond, and R. Rico-hesse, Mosquito Bite Delivery of Dengue Virus Enhances Immunogenicity and Pathogenesis in Humanized Mice, J Virol, vol.86, pp.7637-7649, 2012.

S. Wichit, P. Ferraris, V. Choumet, and D. Missé, The effects of mosquito saliva on dengue virus infectivity in humans, Curr Opin Virol. Elsevier B.V, vol.21, pp.139-145, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01453403

B. S. Schneider, L. Soong, Y. A. Girard, G. Campbell, P. Mason et al., Potentiation of West Nile encephalitis by mosquito feeding, Viral Immunol, vol.19, pp.74-82, 2006.

W. K. Reisen, R. E. Chiles, L. D. Kramer, V. M. Martinez, and B. F. Eldridge, Method of Infection Does Not Alter Response of Chicks and House Finches to Western Equine Encephalomyelitis and St. Louis Encephalitis Viruses, Journal of Medical Entomology, vol.37, pp.250-258, 2000.

L. M. Styer, P. Y. Lim, K. L. Louie, R. G. Albright, L. D. Kramer et al., Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice, J Virol, vol.85, pp.1517-1527, 2011.

L. A. Moser, P. Lim, L. M. Styer, L. D. Kramer, and K. A. Bernard, Parameters of Mosquito-Enhanced West Nile Virus Infection, J Virol. American Society for Microbiology, vol.90, pp.292-299, 2015.

R. B. Griffiths and R. M. Gordon, An apparatus which enables the process of feeding by mosquitoes to be observed in the tissues of a live rodent; together with an account of the ejection of saliva and its significance in Malaria, Ann Trop Med Parasitol, vol.46, pp.311-319, 1952.

V. Choumet, T. Attout, L. Chartier, H. Khun, J. Sautereau et al., Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice, PLoS ONE. Public Library of Science, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00771516

V. Cao-lormeau, Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands, Virol J. BioMed Central, vol.6, p.35, 2009.

K. Alsaleh, C. Khou, M. Frenkiel, S. Lecollinet, A. Vàzquez et al., The E glycoprotein plays an essential role in the high pathogenicity of European-Mediterranean IS98 strain of West Nile virus, Virology, vol.492, pp.53-65, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452892

M. Choi, C. Chang, T. Clough, D. Broudy, T. Killeen et al., MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments, Bioinformatics, vol.30, pp.2524-2526, 2014.

B. T. Da-wei-huang-sherman and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc. Nature Publishing Group, vol.4, pp.44-57, 2009.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res, vol.37, pp.1-13, 2009.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. Cold Spring Harbor Lab, vol.13, pp.2498-2504, 2003.

P. A. Swanson, . Ii, and D. B. Mcgavern, Viral diseases of the central nervous system, Curr Opin Virol, vol.11, pp.44-54, 2015.

M. S. Diamond, Evasion of innate and adaptive immunity by flaviviruses, Immunology and Cell Biology, vol.81, pp.196-206, 2003.

M. U. Gack and M. S. Diamond, Innate immune escape by Dengue and West Nile viruses, Curr Opin Virol, vol.20, pp.119-128, 2016.

P. Wang, A. Arjona, Y. Zhang, H. Sultana, J. Dai et al., Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I, Nat Immunol, vol.11, pp.912-919, 2010.

S. J. Arnold, S. R. Osvath, R. A. Hall, N. King, and L. M. Sedger, Regulation of antigen processing and presentation molecules in West Nile virus-infected human skin fibroblasts, Virology, vol.324, pp.286-296, 2004.

J. Guarner, W. Shieh, S. Hunter, C. D. Paddock, T. Morken et al., Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis, Human Pathology, vol.35, pp.983-990, 2004.

A. C. German, K. Myint, N. Mai, I. Pomeroy, N. H. Phu et al., A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model, Trans R Soc Trop Med Hyg. Oxford University Press, vol.100, pp.1135-1145, 2006.

T. Mashimo, M. Lucas, D. Simon-chazottes, M. Frenkiel, X. Montagutelli et al., A nonsense mutation in the gene encoding 2"-5-"oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proc Natl Acad Sci USA, vol.99, pp.11311-11316, 2002.

C. Abdallah, E. Dumas-gaudot, J. Renaut, and K. Sergeant, Gel-Based and Gel-Free Quantitative Proteomics Approaches at a Glance, International Journal of Plant Genomics, vol.2012, pp.1-17, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004759

P. Wang, J. Dai, F. Bai, K. F. Kong, S. J. Wong et al., Matrix Metalloproteinase 9 Facilitates West Nile Virus Entry into the Brain, J Virol, vol.82, pp.8978-8985, 2008.

W. Tung, H. Tsai, I. Lee, H. Hsieh, W. Chen et al., Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-?B signalling dependent on MAPKs and reactive oxygen species, British Journal of Pharmacology, vol.161, pp.1566-1583, 2010.

F. N. Bolkenius and A. J. Ganzhorn, Peptidylglycine alpha-amidating mono-oxygenase: neuropeptide amidation as a target for drug design, Gen Pharmacol, vol.31, issue.98, p.192, 1998.

E. Weihe, M. Bette, M. Preuss, M. Faber, . Schä-fer-mk-h et al., Role of virus-induced neuropeptides in the brain in the pathogenesis of rabies, Dev Biol (Basel), vol.131, pp.73-81, 2008.

R. Yaraee, M. Ebtekar, A. Ahmadiani, and F. Sabahi, Neuropeptides (SP and CGRP) augment pro-inflammatory cytokine production in HSV-infected macrophages, Int Immunopharmacol, vol.3, pp.201-208, 2003.

H. Liang, S. Samanta, and L. Nagarajan, SSBP2, a candidate tumor suppressor gene, induces growth arrest and differentiation of myeloid leukemia cells, Oncogene. Nature Publishing Group, vol.24, pp.2625-2634, 2005.

M. J. Conway, T. M. Colpitts, and E. Fikrig, Role of the Vector in Arbovirus Transmission, Annual Review of Virology, vol.1, pp.71-88, 2014.

M. Pingen, S. R. Bryden, E. Pondeville, E. Schnettler, A. Kohl et al., Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity. The Author(s), vol.44, pp.1455-1469, 2016.

A. Lopez-denman and J. Mackenzie, The IMPORTance of the Nucleus during Flavivirus Replication. Viruses. Multidisciplinary Digital Publishing Institute, vol.9, pp.14-25, 2017.

L. Sage, V. Mouland, and A. , Viral Subversion of the Nuclear Pore Complex, Viruses, vol.5, pp.2019-2042, 2013.

M. J. Conway, A. M. Watson, T. M. Colpitts, S. M. Dragovic, Z. Li et al., Mosquito Saliva Serine Protease Enhances Dissemination of Dengue Virus into the Mammalian Host, J Virol. American Society for Microbiology, vol.88, pp.164-175, 2014.

B. S. Schneider, C. E. Mcgee, J. M. Jordan, H. L. Stevenson, L. Soong et al., Prior Exposure to Uninfected Mosquitoes Enhances Mortality in Naturally-Transmitted West Nile Virus Infection, PLoS ONE. Public Library of Science, vol.2, p.1171, 2007.

Y. Perez-riverol, A. Csordas, J. Bai, M. Bernal-llinares, S. Hewapathirana et al., The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, pp.442-450, 2019.