K. Góralska, J. Blaszkowska, and M. Dzikowiec, Neuroinfections caused by fungi, Infection, vol.46, pp.443-459, 2018.

S. Schwartz, D. P. Kontoyiannis, T. Harrison, and M. Ruhnke, Advances in the diagnosis and treatment of fungal infections of the CNS, Lancet Neurol, vol.17, pp.362-372, 2018.

D. A. Enoch, H. Yang, S. H. Aliyu, and C. Micallef, The Changing Epidemiology of Invasive Fungal Infections, pp.17-65, 2017.

S. C. Lee, D. W. Dickson, and A. Casadevall, Pathology of cryptococcal meningoencephalitis: Analysis of 27 patients with pathogenetic implications, Hum Pathol, vol.27, pp.839-847, 1996.

P. R. Williamson, J. N. Jarvis, A. A. Panackal, M. C. Fisher, S. F. Molloy et al., Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy, Nat Rev Neurol, vol.13, pp.13-24

S. Chen, T. Sorrell, G. Nimmo, B. Speed, B. Currie et al., Epidemiology and Host-and Variety-Dependent Characteristics of Infection Due to Cryptococcus neoformans in Australia and New Zealand, Clin Infect Dis, vol.31, pp.499-508, 2000.

M. H. Nguyen, S. Husain, C. J. Clancy, J. E. Peacock, C. Hung et al., Outcomes of central nervous system cryptococcosis vary with host immune function: Results from a multi-center, prospective study, J Infect, vol.61, pp.419-426, 2010.

T. Roemer and D. J. Krysan, Antifungal drug development: challenges, unmet clinical needs, and new approaches, Cold Spring Harb Perspect Med, vol.4, p.19703, 2014.

J. R. Perfect, The antifungal pipeline: a reality check, Nat Rev Drug Discov, vol.16, pp.603-616, 2017.

D. Sloan and V. Parris, Cryptococcal meningitis: epidemiology and therapeutic options, Clin Epidemiol, vol.6, p.169, 2014.

, Guidelines for the diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children: supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection, World Health Organization, 2018.

D. J. Sloan, M. J. Dedicoat, and D. G. Lalloo, Treatment of cryptococcal meningitis in resource limited settings, Curr Opin Infect Dis, vol.22, pp.455-63, 2009.

S. F. Molloy, C. Kanyama, R. S. Heyderman, A. Loyse, C. Kouanfack et al., , p.28

E. Temfack, S. Lakhi, S. Lesikari, A. K. Chan, N. Stone et al.,

D. Wang, M. C. Hosseinipour, O. Lortholary, S. Jaffar, and T. S. Harrison, Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa, N Engl J Med, vol.378, pp.1004-1017, 2018.

D. J. Krysan, Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugs, Fungal Genet Biol, vol.78, pp.93-98, 2015.

T. Felton, P. F. Troke, and W. W. Hope, Tissue penetration of antifungal agents, Clin Microbiol Rev, vol.27, pp.68-88, 2014.

J. Capilla, K. V. Clemons, and D. A. Stevens, Animal models: an important tool in mycology, Med Mycol, vol.45, pp.657-684, 2007.

T. M. Hohl, Overview of vertebrate animal models of fungal infection, J Immunol Methods, vol.410, pp.100-112, 2014.

P. Avci, M. Karimi, M. Sadasivam, W. C. Antunes-melo, E. Carrasco et al., In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging, Virulence, vol.9, pp.28-63, 2018.

G. Vande-velde, S. Kucharíková, P. Van-dijck, and U. Himmelreich, Bioluminescence imaging increases in vivo screening efficiency for antifungal activity against device-associated Candida albicans biofilms, Int J Antimicrob Agents, vol.52, pp.42-51, 2018.

A. Persyn, O. Rogiers, M. Brock, V. Velde, G. Lamkanfi et al., Monitoring of Fluconazole and Caspofungin Activity against In Vivo Candida glabrata Biofilms by Bioluminescence Imaging, Antimicrob Agents Chemother, vol.63, 2019.

G. Vande-velde, S. Kucharíková, S. Schrevens, U. Himmelreich, and P. Van-dijck, Towards non-invasive monitoring of pathogen-host interactions during Candida albicans biofilm formation using in vivo bioluminescence, Cell Microbiol, vol.16, pp.115-145, 2014.

M. Brock, G. Jouvion, S. Droin-bergère, O. Dussurget, M. Nicola et al., , 2008.

, Bioluminescent Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo monitoring of invasive aspergillosis, Appl Environ Microbiol, vol.74, pp.7023-7058

C. Galiger, M. Brock, G. Jouvion, A. Savers, M. Parlato et al., Assessment of efficacy of antifungals against Aspergillus fumigatus: value of real-time bioluminescence imaging, Antimicrob Agents Chemother, vol.57, pp.3046-59, 2013.

Z. M. Kaskova, A. S. Tsarkova, and I. V. Yampolsky, 1001 lights: Luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine, Chem Soc Rev. Royal Society of Chemistry, 2016.

U. Binder, M. I. Navarro-mendoza, V. Naschberger, I. Bauer, F. E. Nicolas et al., Generation of A Mucor circinelloides Reporter Strain-A Promising New Tool to Study Antifungal Drug Efficacy and Mucormycosis, Genes (Basel), vol.9, p.613, 2018.

J. Poelmans, U. Himmelreich, L. Vanherp, L. Zhai, A. Hillen et al., A Multimodal Imaging Approach Enables In Vivo Assessment of Antifungal Treatment in a Mouse Model of Invasive Pulmonary Aspergillosis, Antimicrob Agents Chemother, vol.62, pp.240-258, 2018.

I. D. Jacobsen, A. Lüttich, O. Kurzai, B. Hube, and M. Brock, In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy, J Antimicrob Chemother, vol.69, pp.2785-2796, 2014.

L. Vanherp, A. Ristani, J. Poelmans, A. Hillen, K. Lagrou et al., Sensitive bioluminescence imaging of fungal dissemination to the brain in mouse models of cryptococcosis, Dis Model Mech, vol.12, p.39123, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02651287

S. Dorsaz, A. T. Coste, and D. Sanglard, Red-Shifted Firefly Luciferase Optimized for Candida albicans, In vivo Bioluminescence Imaging. Front Microbiol, vol.8, p.1478, 2017.

D. S. Palacios, I. Dailey, D. M. Siebert, B. C. Wilcock, and M. D. Burke, Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities, Proc Natl Acad Sci, vol.108, pp.6733-6738, 2011.

J. Bolard, How do the polyene macrolide antibiotics affect the cellular membrane properties?, Biochim Biophys Acta, vol.864, pp.257-304, 1986.

M. Virta, K. Åkerman, P. Saviranta, C. Oker-blom, and M. T. Karp, Real-time measurement of cell permeabilization with low-molecular-weight membranolytic agents, J Antimicrob Chemother, vol.36, pp.303-315, 1995.

Y. M. Te-welscher, H. H. Ten-napel, M. M. Balagué, C. M. Souza, H. Riezman et al., Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane, J Biol Chem, vol.283, pp.6393-401, 2008.

P. Van-dijck, J. Sjollema, B. P. Cammue, K. Lagrou, J. Berman et al., Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms, Microb cell, vol.5, pp.300-326, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625694

I. Ayzenberg, S. Schlevogt, J. Metzdorf, S. Stahlke, X. Pedreitturia et al., Analysis of Neurogenesis during Experimental Autoimmune Encephalomyelitis Reveals Pitfalls of Bioluminescence Imaging, PLoS One, vol.10, p.118550, 2015.

D. R. Hospenthal and J. E. Bennett, Persistence of Cryptococcomas on Neuroimaging, Clin Infect Dis, vol.31, pp.1303-1306, 2000.

J. R. Perfect, W. E. Dismukes, F. Dromer, D. L. Goldman, J. R. Graybill et al., Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america, Clin Infect Dis, vol.50, pp.291-322, 2010.

K. B. Ulett, J. Cockburn, R. Jeffree, and M. L. Woods, Cerebral cryptococcoma mimicking glioblastoma, BMJ Case Rep, 2017.

M. P. Pai, U. Sakoglu, S. L. Peterson, C. R. Lyons, and R. Sood, Characterization of BBB permeability in a preclinical model of cryptococcal meningoencephalitis using magnetic resonance imaging, J Cereb Blood Flow Metab, vol.29, pp.545-53, 2009.

K. Takemoto, Y. Yamamoto, and Y. Ueda, Influence of the Progression of Cryptococcal Meningitis on Brain Penetration and Efficacy of AmBisome in a Murine Model, Chemotherapy, vol.52, pp.271-278, 2006.

R. Lu, C. Hollingsworth, J. Qiu, A. Wang, E. Hughes et al., , p.31, 2019.

, Encochleated Amphotericin B in a Mouse Model of Cryptococcal Meningoencephalitis, MBio, vol.10, pp.724-743

E. Pasquier, J. Kunda, D. Beaudrap, P. Loyse, A. Temfack et al., Long term mortality and disability in Cryptococcal Meningitis: a systematic literature review, Clin Infect Dis, vol.66, pp.1122-1132, 2018.

C. Aye, A. Henderson, H. Yu, and R. Norton, Cryptococcosis: the impact of delay to diagnosis, Clin Microbiol Infect, vol.22, pp.632-635, 2016.

R. Bellmann and P. Smuszkiewicz, Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients, Infection, vol.45, p.737, 2017.

H. Vogelsinger, S. Weiler, A. Djanani, J. Kountchev, R. Bellmann-weiler et al., Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion, J Antimicrob Chemother, vol.57, pp.1153-1160, 2006.

K. Voelz, S. A. Johnston, and J. C. Rutherford, Automated analysis of cryptococcal macrophage parasitism using GFP-tagged cryptococci, PLoS One, vol.5, p.15968, 2010.

J. Santos, N. Q. Ribeiro, R. W. Bastos, R. A. Holanda, L. C. Silva et al., , 2017.

, High-dose fluconazole in combination with amphotericin B is more efficient than monotherapy in murine model of cryptococcosis, Sci Rep, vol.7, p.4661

U. Himmelreich, T. E. Dzendrowskyj, C. Allen, S. Dowd, R. Malik et al., Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study, Radiology, vol.220, pp.122-130, 2001.

J. Lestner, L. Mcentee, A. Johnson, J. Livermore, S. Whalley et al., Experimental Models of Short Courses of Liposomal Amphotericin B for Induction Therapy for Cryptococcal Meningitis, Antimicrob Agents Chemother, vol.61, pp.90-107, 2017.

M. Aswendt, J. Adamczak, S. Couillard-despres, M. Hoehn, C. Bailly et al., Boosting Bioluminescence Neuroimaging: An Optimized Protocol for Brain Studies, PLoS One, vol.8, p.55662, 2013.

P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho et al., User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, Neuroimage, vol.31, pp.1116-1128, 2006.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image 32 Methods, vol.9, pp.671-675, 2012.

S. Bolte and F. P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, J Microsc, vol.224, pp.213-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481