D. L. Hawksworth and R. Lücking, Fungal diversity revisited: 2.2 to 3.8 million species, Microbiol. Spectrum, vol.5, 2017.

I. V. Grigoriev, R. Nikitin, S. Haridas, A. Kuo, R. Ohm et al., MycoCosm portal: gearing up for 1000 fungal genomes, Nucleic Acids Res, vol.42, pp.699-704, 2014.

, Nucleic Acids Research, vol.48, issue.5, p.2329, 2020.

G. Fan, Q. Sun, W. Li, W. Shi, X. Li et al., The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species, GigaScience, vol.7, 2018.

X. Shen, D. A. Opulente, J. Kominek, X. Zhou, J. L. Steenwyk et al., Tempo and mode of genome evolution in the budding yeast subphylum, Cell, vol.175, pp.1533-1545, 2018.

G. Butler, M. D. Rasmussen, M. F. Lin, M. A. Santos, S. Sakthikumar et al., Evolution of pathogenicity and sexual reproduction in eight Candida genomes, Nature, p.657, 2009.

B. Dujon, D. Sherman, G. Fisher, P. Durrens, S. Casaregola et al., Genome evolution in yeasts, Nature, vol.430, pp.35-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104411

J. E. Stajich, Fungal genomes and insights into the evolution of the kingdom, Microbiol. Spectrum, vol.5, 2017.

J. E. Stajich, F. S. Dietrich, and S. W. Roy, Comparative genomic analysis of fungal genomes reveals intron-rich ancestors, 2007.

, Genome Biol, vol.8, p.223

A. Coletta, J. W. Pinney, D. Y. Solís, J. Marsh, S. R. Pettifer et al., Low-complexity regions within protein sequences have position-dependent roles, BMC Syst. Biol, vol.4, pp.43-43, 2010.

A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon et al., Life with 6000 Genes, Science, vol.274, p.546, 1996.

B. J. Haas, Q. Zeng, M. D. Pearson, C. A. Cuomo, and J. R. Wortman, Approaches to fungal genome annotation, Mycology, vol.2, pp.118-141, 2011.

M. Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell, vol.44, pp.283-292, 1986.

M. Kozak, An analysis of 5 -noncoding sequences from 699 vertebrate messenger RNAs, Nucleic Acids Res, vol.15, pp.8125-8148, 1987.

T. E. Dever, T. G. Kinzy, and G. D. Pavitt, Mechanism and regulation of protein synthesis in Saccharomyces cerevisiae, Genetics, vol.203, pp.65-107, 2016.

S. Dvir, L. Velten, E. Sharon, D. Zeevi, L. B. Carey et al., Deciphering the rules by which 5 -UTR sequences affect protein expression in yeast, Proc. Natl Acad. Sci. U.S.A, vol.110, pp.2792-2801, 2013.

J. T. Cuperus, B. Groves, A. Kuchina, A. B. Rosenberg, N. Jojic et al., Deep learning of the regulatory grammar of yeast 5 untranslated regions from 500,000 random sequences, Genome Res, vol.27, pp.2015-2024, 2017.

H. Park and A. R. Subramaniam, Inverted translational control of eukaryotic gene expression by ribosome collisions, PLoS Biol, vol.17, p.3000396, 2019.

J. J. Li, G. Chew, and M. D. Biggin, Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes, Genome Biol, vol.20, p.162, 2019.

P. Fervers, F. Fervers, W. Maka?owski, and M. J?kalski, Life cycle adapted upstream open reading frames (uORFs) in Trypanosoma congolense: A post-transcriptional approach to accurate gene regulation, PLoS One, vol.13, p.201461, 2018.

C. D. Duncan, M. Rodríguez-lópez, P. Ruis, J. Bähler, and J. Mata, General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4, Proc. Natl Acad. Sci. U.S.A, vol.115, pp.1829-1838, 2018.

A. Sundaram and C. M. Grant, A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions, RNA, vol.20, pp.559-567, 2014.

I. P. Ivanov, J. Wei, S. Z. Caster, K. M. Smith, A. M. Michel et al., Translation initiation from conserved Non-AUG codons provides additional layers of regulation and coding capacity, mBio, vol.8, pp.844-00817, 2017.

A. G. Von-arnim, Q. Jia, and J. N. Vaughn, Regulation of plant translation by upstream open reading frames, Plant Sci, vol.214, pp.1-12, 2014.

C. Barbosa, I. Peixeiro, and L. Romão, Gene expression regulation by upstream open reading frames and human disease, PLos Genet, vol.9, pp.1003529-1003529, 2013.

S. Chen, G. Lin, K. Chang, L. Yeh, and C. Wang, Translational efficiency of a Non-AUG initiation codon is significantly affected by its sequence context in yeast, J. Biol. Chem, vol.283, pp.3173-3180, 2008.

A. G. Hinnebusch, I. P. Ivanov, and N. Sonenberg, Translational control by 5 -untranslated regions of eukaryotic mRNAs, Science, vol.352, pp.1413-1416, 2016.

K. Wethmar, The regulatory potential of upstream open reading frames in eukaryotic gene expression, Wiley Interdiscip. Rev.: RNA, vol.5, pp.765-768, 2014.

J. L. Llácer, T. Hussain, L. Marler, C. E. Aitken, A. Thakur et al., Conformational differences between open and closed states of the eukaryotic translation initiation complex, Mol. Cell, vol.59, pp.399-412, 2015.

A. G. Hinnebusch, Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation, Trends Biochem. Sci, vol.42, pp.589-611, 2017.

J. L. Llácer, T. Hussain, A. K. Saini, J. S. Nanda, S. Kaur et al., Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition, p.39273, 2018.

G. Janbon, Introns in Cryptococcus, Mem. Inst. Oswaldo Cruz, vol.113, p.170519, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02649397

C. Goebels, A. Thonn, S. Gonzalez-hilarion, O. Rolland, F. Moyrand et al., Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway, PLoS Genet, vol.9, p.1003686, 2013.

P. A. Dumesic, P. Natarajan, C. Chen, I. A. Drinnenberg, B. J. Schiller et al., Stalled spliceosomes are a signal for RNAi-mediated genome defense, Cell, vol.152, pp.957-968, 2013.

A. Bonnet, A. R. Grosso, A. Elkaoutari, E. Coleno, A. Presle et al., Introns protect eukaryotic genomes from transcription-Associated genetic instability, Mol. Cell, vol.67, pp.608-621, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788654

G. Janbon, K. L. Ormerod, D. Paulet, E. J. Byrnes, . Iii et al., Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation, PLos Genet, vol.10, p.1004261, 2014.

S. Gonzalez-hilarion, D. Paulet, K. Lee, C. Hon, P. Lechat et al., Intron retention-dependent gene regulation in Cryptococcus neoformans, Sci. Rep, vol.6, p.32252, 2016.

F. Winston, C. Dollard, and S. L. Ricupero-hovasse, Construction of a set of convenient saccharomyces cerevisiae strains that are isogenic to S288C, Yeast, vol.11, pp.53-55, 1995.

N. Lee and G. Janbon, Med Mycol, pp.275-304, 2006.

F. Moyrand, I. Lafontaine, T. Fontaine, and G. Janbon, UGE1 and UGE2 regulate the UDP-glucose/UDP-galactose equilibrium in Cryptococcus neoformans, Eukaryot. Cell, vol.7, pp.2069-2077, 2008.

C. Malabat, F. Feuerbach, L. Ma, C. Saveanu, and A. Jacquier, Quality control of transcription start site selection by nonsense-mediated-mRNA decay, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01404014

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, pp.36-36, 2013.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, 2011.

N. T. Ingolia, S. Ghaemmaghami, J. R. Newman, and J. S. Weissman, Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, vol.324, p.218, 2009.

J. G. Dunn, C. K. Foo, N. G. Belletier, E. R. Gavis, and J. S. Weissman, Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster, p.1179, 2013.

O. Carja, T. Xing, E. W. Wallace, J. B. Plotkin, and P. Shah, riboviz: analysis and visualization of ribosome profiling datasets, BMC Bioinformatics, vol.18, pp.461-461, 2017.

M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, and S. L. Salzberg, Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, Nat. Protoc, vol.11, p.1650, 2016.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

R. C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2018.

H. Wickham, In: ggplot2: Elegant Graphics for Data Analysis, 2016.

H. Wickham, R. François, L. Henry, and K. Müller, dplyr: A Grammar of Data Manipulation, 2018.

C. O. Wilke, cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2, 2018.

O. Wagih, 2017) ggseqlogo: A 'ggplot2' Extension for Drawing Publication-Ready Sequence Logos

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

A. Wilm, D. G. Higgins, F. Valentin, G. Blackshields, H. Mcwilliam et al., Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, pp.2947-2948, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

C. Yu, Y. Dang, Z. Zhou, C. Wu, F. Zhao et al., Codon usage influences the local rate of translation elongation to regulate Co-translational protein folding, Mol. Cell, vol.59, pp.744-754, 2015.

P. J. Kersey, J. E. Allen, A. Allot, M. Barba, S. Boddu et al., Ensembl genomes 2018: an integrated omics infrastructure for non-vertebrate species, Nucleic Acids Res, vol.46, pp.802-808, 2018.

C. D. Duncan and J. Mata, Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe, Sci. Rep, vol.7, p.10331, 2017.

D. Muzzey, G. Sherlock, and J. S. Weissman, Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans, Genome Res, vol.24, pp.963-973, 2014.

M. S. Skrzypek, J. Binkley, G. Binkley, S. R. Miyasato, M. Simison et al., The candida genome database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data, Nucleic Acids Res, vol.45, pp.592-596, 2017.

M. V. Gerashchenko and V. N. Gladyshev, Translation inhibitors cause abnormalities in ribosome profiling experiments, Nucleic Acids Res, vol.42, p.134, 2014.

G. Csárdi, A. Franks, D. S. Choi, E. M. Airoldi, and D. A. Drummond, Accounting for experimental noise reveals that mRNA Levels, amplified by post-transcriptional processes, largely determine Steady-State protein levels in yeast, PLos Genet, vol.11, p.1005206, 2015.

D. E. Weinberg, P. Shah, S. W. Eichhorn, J. A. Hussmann, J. B. Plotkin et al., Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation, Cell Rep, vol.14, pp.1787-1799, 2016.

J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley et al., Saccharomyces genome database: the genomics resource of budding yeast, Nucleic Acids Res, vol.40, pp.700-705, 2012.

E. V. Kriventseva, D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias et al., OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs, Nucleic Acids Res, vol.47, pp.807-811, 2019.

H. Mi, A. Muruganujan, and P. D. Thomas, PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees, Nucleic Acids Res, vol.41, pp.377-386, 2013.

Y. E. Basenko, A. J. Pulman, A. Shanmugasundram, S. O. Harb, K. Crouch et al., FungiDB: an integrated bioinformatic resource for fungi and oomycetes, J. Fungi, vol.4, p.39, 2018.

N. Ban, R. Beckmann, J. H. Cate, J. D. Dinman, F. Dragon et al., A new system for naming ribosomal proteins, Curr. Opin. Struct. Biol, vol.24, pp.165-169, 2014.

H. Li, J. Hou, L. Bai, C. Hu, P. Tong et al., Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE, RNA Biol, vol.12, pp.525-537, 2015.

D. E. Neafsey and J. E. Galagan, Dual modes of natural selection on upstream open reading frames, Mol. Biol. Evol, vol.24, pp.1744-1751, 2007.

A. G. Hinnebusch, Translational regulation of GCN4 and the general amino acid control of yeast, Annu. Rev. Microbiol, vol.59, pp.407-450, 2005.

C. D. Duncan, M. Rodríguez-lópez, P. Ruis, J. Bähler, and J. Mata, General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4, Proc. Natl Acad. Sci. U.S.A, vol.115, p.1829, 2018.

L. Madi, S. A. Mcbride, L. A. Bailey, and D. J. Ebbole, rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa, Genetics, vol.146, pp.499-508, 1997.

A. Wiese, N. Elzinga, B. Wobbes, and S. Smeekens, Sucrose-induced translational repression of plant bZIP-type transcription factors, Biochem. Soc. Trans, vol.33, p.272, 2005.

A. Gaba, Z. Wang, T. Krishnamoorthy, A. G. Hinnebusch, and M. S. Sachs, Physical evidence for distinct mechanisms of translational control by upstream open reading frames, EMBO J, vol.20, pp.6453-6463, 2001.

S. Kervestin and A. Jacobson, NMD: a multifaceted response to premature translational termination, Nat. Rev. Mol. Cell Biol, vol.13, pp.703-712, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00776293

J. A. Arribere and W. V. Gilbert, Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing, Genome Res, vol.23, pp.977-987, 2013.

H. M. Hood, C. C. Spevak, and M. S. Sachs, Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame, Fungal Genet. Biol, vol.44, pp.93-104, 2007.

A. Gaba, A. Jacobson, and M. S. Sachs, Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates Nonsense-Mediated mRNA Decay, Mol. Cell, vol.20, pp.449-460, 2005.

Y. Zhang and M. S. Sachs, Control of mRNA stability in fungi by NMD, EJC and CBC factors through 3 UTR introns, Genetics, p.1133, 0200.

J. Wei, Y. Zhang, I. P. Ivanov, and M. S. Sachs, The stringency of start codon selection in the filamentous fungus Neurospora crassa, J. Biol. Chem, vol.288, pp.9549-9562, 2013.

P. Spealman, A. W. Naik, G. E. May, S. Kuersten, L. Freeberg et al., Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data, Genome Res, vol.28, pp.214-222, 2018.

C. J. Danpure, How can the products of a single gene be localized to more than one intracellular compartment?, Trends Cell Biol, vol.5, pp.230-238, 1995.

M. C. Silva-filho, One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations, Curr. Opin. Plant Biol, vol.6, pp.589-595, 2003.

H. Mireau, D. Lancelin, and I. D. Small, The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases, Plant Cell, vol.8, pp.1027-1039, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02687070

S. J. Mudge, J. H. Williams, H. J. Eyre, G. R. Sutherland, P. J. Cowan et al., Complex organisation of the 5 -end of the human glycine tRNA synthetase gene, Gene, vol.209, pp.45-50, 1998.

, Nucleic Acids Research, vol.48, issue.5, p.2331, 2020.

G. Natsoulis, F. Hilger, and G. R. Fink, The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae, Cell, vol.46, pp.235-243, 1986.

M. Datt and A. Sharma, Novel and unique domains in aminoacyl-tRNA synthetases from human fungal pathogens Aspergillus niger, Candida albicans and Cryptococcus neoformans, BMC Genomics, vol.15, p.1069, 2014.

A. Duchêne, C. Pujol, and L. Maréchal-drouard, Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria, Curr. Genet, vol.55, pp.1-18, 2009.

A. Muruganujan, D. Ebert, H. Mi, P. D. Thomas, and X. Huang, PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools, Nucleic Acids Res, vol.47, pp.419-426, 2018.

M. Frechin, A. Duchêne, and H. D. Becker, Translating organellar glutamine codons: a case by case scenario?, RNA Biol, vol.6, pp.31-34, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367450

C. Chang, Y. Tseng, C. Ko, and C. Wang, Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin, Nucleic Acids Res, vol.40, pp.314-322, 2012.

R. Geslain, F. Martin, B. Delagoutte, J. Cavarelli, J. Gangloff et al., In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase, RNA, vol.6, pp.434-448, 2000.

S. Merz and B. Westermann, Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae, Genome Biol, vol.10, p.95, 2009.

A. Sickmann, J. Reinders, Y. Wagner, C. Joppich, R. Zahedi et al., The proteome of Saccharomyces cerevisiae mitochondria, Proc. Natl Acad. Sci. U.S.A, vol.100, pp.13207-13212, 2003.

S. Chen, Y. Wu, H. Huang, and C. Wang, Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene, PLoS One, vol.7, p.33363, 2012.

W. Chiu, C. Chang, W. Wen, S. Wang, and C. Wang, Schizosaccharomyces pombe possesses two paralogous Valyl-tRNA synthetase genes of mitochondrial origin, Mol. Biol. Evol, vol.27, pp.1415-1424, 2010.

I. P. Ivanov, G. Loughran, M. S. Sachs, and J. F. Atkins, Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1), Proc. Natl Acad. Sci. U.S.A, vol.107, pp.18056-18060, 2010.

G. Loughran, M. S. Sachs, J. F. Atkins, and I. P. Ivanov, Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5, Nucleic Acids Res, vol.40, pp.2898-2906, 2012.

P. Martin-marcos, Y. Cheung, and A. G. Hinnebusch, Functional elements in initiation factors 1, 1A, and 2? discriminate against poor AUG context and non-AUG start codons, Mol. Cell. Biol, vol.31, pp.4814-4831, 2011.

T. Hussain, J. L. Llácer, I. S. Fernández, A. Munoz, P. Martin-marcos et al., Structural changes enable start codon recognition by the eukaryotic translation initiation complex, Cell, vol.159, pp.597-607, 2014.

A. Thakur and A. G. Hinnebusch, Loop 2 interactions with Met-tRNA(i) control the accuracy of start codon selection by the scanning preinitiation complex, Proc. Natl Acad. Sci. U.S.A, vol.115, pp.4159-4168, 2018.

D. S. Olsen, E. M. Savner, A. Mathew, F. Zhang, T. Krishnamoorthy et al., Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo, EMBO J, vol.22, pp.193-204, 2003.

R. E. Luna, H. Arthanari, H. Hiraishi, B. Akabayov, L. Tang et al., The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes, Biochemistry, vol.52, pp.9510-9518, 2013.

C. A. Fekete, D. J. Applefield, S. A. Blakely, N. Shirokikh, T. Pestova et al., The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo, EMBO J, vol.24, pp.3588-3601, 2005.

L. B. Slusher, E. C. Gillman, N. C. Martin, and A. K. Hopper, ) mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5, Proc. Natl Acad. Sci. U.S.A, vol.88, p.9789, 1991.

S. E. Calvo, D. J. Pagliarini, and V. K. Mootha, Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans, Proc. Natl Acad. Sci. U.S.A, vol.106, pp.7507-7512, 2009.

Z. Cheng, G. M. Otto, E. N. Powers, A. Keskin, P. Mertins et al., Pervasive, coordinated protein-Level changes driven by transcript isoform switching during meiosis, Cell, vol.172, pp.910-923, 2018.

K. M. Van-dalfsen, S. Hodapp, A. Keskin, G. M. Otto, C. A. Berdan et al., Global proteome remodeling during ER stress involves Hac1-Driven expression of long undecoded transcript isoforms, Dev. Cell, vol.46, pp.219-235, 2018.

G. Monteuuis, A. Mi?cicka, M. ?wirski, L. Zenad, O. Niemitalo et al., Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins, Nucleic Acids Res, vol.47, pp.5777-5791, 2019.

G. A. Brar, Beyond the triplet code: Context cues transform translation, Cell, vol.167, pp.1681-1692, 2016.

K. A. Feeney, L. L. Hansen, M. Putker, C. Olivares-yañez, J. Day et al., Daily magnesium fluxes regulate cellular timekeeping and energy balance, Nature, vol.532, pp.375-379, 2016.

T. Tsuboi, M. P. Viana, F. Xu, J. Yu, R. Chanchani et al., Mitochondrial volume fraction controls translation of nuclear-encoded mitochondrial proteins, 2019.

S. Nakagawa, Y. Niimura, T. Gojobori, H. Tanaka, and K. Miura, Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes, Nucleic Acids Res, vol.36, pp.861-871, 2008.

M. Shah, D. Su, J. S. Scheliga, T. Pluskal, S. Boronat et al., A transcript-specific eIF3 complex mediates global translational control of energy metabolism, Cell Rep, vol.16, pp.1891-1902, 2016.

S. D. Fields, M. N. Conrad, and M. Clarke, The S. cerevisiae CLU1 and D. discoideum cluA genes are functional homologues that influence mitochondrial morphology and distribution, J. Cell Sci, vol.111, p.1717, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-01447887

J. Gao, D. Schatton, P. Martinelli, H. Hansen, D. Pla-martin et al., CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins, J. Cell Biol, vol.207, pp.213-223, 2014.

D. Schatton, D. Pla-martin, M. Marx, H. Hansen, A. Mourier et al., CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs, J. Cell Biol, vol.216, pp.675-693, 2017.

M. D. Smith, Y. Gu, J. Querol-audí, J. M. Vogan, A. Nitido et al., Human-Like eukaryotic translation initiation factor 3 from neurospora crassa, PLoS One, vol.8, p.78715, 2013.

H. D. Madhani, The frustrated gene: origins of eukaryotic gene expression, Cell, vol.155, pp.744-749, 2013.