D. Baeten, X. Baraliakos, J. Braun, J. Sieper, P. Emery et al., Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial, Lancet, vol.382, pp.1705-1718, 2013.

D. Baeten, J. Sieper, J. Braun, X. Baraliakos, M. Dougados et al., Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis, N Engl J Med, vol.373, pp.2534-2582, 2015.

I. B. Mcinnes, P. J. Mease, B. Kirkham, A. Kavanaugh, C. T. Ritchlin et al., Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial, Lancet, vol.386, pp.1137-1183, 2015.

P. J. Mease, I. B. Mcinnes, B. Kirkham, A. Kavanaugh, P. Rahman et al., Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis, N Engl J Med, vol.373, pp.1329-1368, 2015.

P. Bowness, A. Ridley, J. Shaw, A. T. Chan, I. Wong-baeza et al., Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis, J Immunol, vol.186, pp.2672-80, 2011.

M. Coffre, M. Roumier, M. Rybczynska, E. Sechet, H. K. Law et al., Combinatorial control of Th17 and Th1 cell functions by genetic variations in genes associated with the interleukin-23 signaling pathway in spondyloarthritis, Arthritis Rheum, vol.65, pp.1510-1531, 2013.

D. T. Jansen, M. Hameetman, J. Van-bergen, T. W. Huizinga, D. Van-der-heijde et al., IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities, Rheumatology (Oxford), vol.54, pp.728-763, 2015.

T. J. Kenna, S. I. Davidson, R. Duan, L. A. Bradbury, J. Mcfarlane et al., Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive ?/? T cells in patients with active ankylosing spondylitis, Arthritis Rheum, vol.64, pp.1420-1429, 2012.

B. Menon, N. J. Gullick, G. J. Walter, M. Rajasekhar, T. Garrood et al., Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression, Arthritis Rheumatol, vol.66, pp.1272-81, 2014.

H. Appel, R. Maier, P. Wu, R. Scheer, A. Hempfing et al., Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response, Arthritis Res Ther, vol.13, p.95, 2011.

A. M. Lin, C. J. Rubin, R. Khandpur, J. Y. Wang, M. Riblett et al., Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis, J Immunol, vol.187, pp.490-500, 2011.

T. Noordenbos, N. Yeremenko, I. Gofita, M. Van-de-sande, P. P. Tak et al., Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis, Arthritis Rheum, vol.64, pp.99-109, 2012.

R. Keijsers, A. G. Hendriks, P. E. Van-erp, B. Van-cranenbroek, P. C. Van-de-kerkhof et al., In vivo induction of cutaneous inflammation results in the accumulation of extracellular trapforming neutrophils expressing ROR?t and IL-17, J Invest Dermatol, vol.134, pp.1276-84, 2014.

N. C. Brembilla, R. Stalder, L. Senra, and W. H. Boehncke, IL-17A localizes in the exocytic compartment of mast cells in psoriatic skin, Br J Dermatol, vol.177, pp.1458-60, 2017.

J. P. Sherlock, B. Joyce-shaikh, S. P. Turner, C. C. Chao, M. Sathe et al., IL-23 induces spondyloarthropathy by acting on ROR-?t+ CD3+CD4?CD8? entheseal resident T cells, Nat Med, vol.18, pp.1069-76, 2012.

D. Artis and H. Spits, The biology of innate lymphoid cells, Nature, vol.517, pp.293-301, 2015.

M. Cella, A. Fuchs, W. Vermi, F. Facchetti, K. Otero et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity, Nature, vol.457, pp.722-727, 2009.

T. Glatzer, M. Killig, J. Meisig, I. Ommert, M. Luetke-eversloh et al., ROR?t(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44, Immunity, vol.38, pp.1223-1258, 2013.

S. Sawa, M. Lochner, N. Satoh-takayama, S. Dulauroy, M. Berard et al., ROR?t+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota, Nat Immunol, vol.12, pp.320-326, 2011.

C. S. Klose and D. Artis, Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis, Nat Immunol, vol.17, pp.765-74, 2016.

K. Hoorweg, C. P. Peters, F. Cornelissen, P. Aparicio-domingo, N. Papazian et al., Functional differences between human NKp44(?) and NKp44(+) RORC(+) innate lymphoid cells, Front Immunol, vol.3, p.72, 2012.

T. Cupedo, N. K. Crellin, N. Papazian, E. J. Rombouts, K. Weijer et al., Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells, Nat Immunol, vol.10, pp.66-74, 2009.

F. Ciccia, G. Guggino, A. Rizzo, L. Saieva, S. Peralta et al., Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis, Ann Rheum Dis, vol.74, pp.1739-1786, 2015.

E. F. Leijten, T. S. Van-kempen, M. Boes, J. M. Michels-van-amelsfort, D. Hijnen et al., Enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid, Arthritis Rheumatol, vol.67, pp.2673-2681, 2015.

A. Geremia, C. V. Arancibia-carcamo, M. P. Fleming, N. Rust, B. Singh et al., IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease, J Exp Med, vol.208, pp.1127-1160, 2011.

R. J. Cuthbert, E. M. Fragkakis, R. Dunsmuir, Z. Li, M. Coles et al., Group 3 innate lymphoid cells in human enthesis, Arthritis Rheumatol, vol.69, pp.1816-1838, 2017.

M. H. Al-mossawi, L. Chen, H. Fang, A. Ridley, J. De-wit et al., Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis, Nat Commun, vol.8, p.1510, 2017.

M. Rudwaleit, D. Van-der-heijde, R. Landewe, N. Akkoc, J. Brandt et al., The assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general, Ann Rheum Dis, vol.70, pp.25-31, 2011.

F. C. Arnett, S. M. Edworthy, D. A. Bloch, D. J. Mcshane, J. F. Fries et al., The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis, Arthritis Rheum, vol.31, pp.315-339, 1988.

D. Baeten, F. Van-den-bosch, D. Elewaut, A. Stuer, E. M. Veys et al., Needle arthroscopy of the knee with synovial biopsy sampling: technical experience in 150 patients, Clin Rheumatol, vol.18, pp.434-475, 1999.

L. H. Van-der-maaten and G. Hinton, Visualizing high-dimensional data using t-SNE, J Mach Learn Res, vol.9, pp.2579-605, 2008.

M. D. Hazenberg and H. Spits, Human innate lymphoid cells, Blood, vol.124, pp.700-709, 2014.

H. Spits, D. Artis, M. Colonna, A. Diefenbach, D. Santo et al., Innate lymphoid cells: a proposal for uniform nomenclature, Nat Rev Immunol, vol.13, pp.145-154, 2013.

C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, E. C. Lavelle et al., Interleukin-1 and IL-23 induce innate IL-17 production from ?? T cells, amplifying Th17 responses and autoimmunity, Immunity, vol.31, pp.321-351, 2009.

F. Villanova, B. Flutter, I. Tosi, K. Grys, H. Sreeneebus et al., Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis, J Invest Dermatol, vol.134, pp.984-91, 2014.

M. B. Teunissen, J. M. Munneke, J. H. Bernink, P. I. Spuls, P. C. Res et al., Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients, J Invest Dermatol, vol.134, pp.2351-60, 2014.

T. Noordenbos, I. Blijdorp, S. Chen, J. Stap, E. Mul et al., Human mast cells capture, store, and release bioactive, exogenous IL-17A, J Leukoc Biol, vol.100, pp.453-62, 2016.