A. Buniello, J. A. Macarthur, M. Cerezo, L. W. Harris, J. Hayhurst et al., The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019, Nucleic Acids Res, vol.47, pp.1005-1012, 2019.

B. Pasaniuc and A. L. Price, Dissecting the genetics of complex traits using summary association statistics, Nat. Rev. Genet, vol.18, pp.117-127, 2017.

P. Turley, R. K. Walters, O. Maghzian, A. Okbay, J. J. Lee et al., Multi-trait analysis of genome-wide association summary statistics using MTAG, Nat. Genet, vol.50, pp.229-237, 2018.

B. Pasaniuc, N. Zaitlen, H. Shi, G. Bhatia, A. Gusev et al., Fast and accurate imputation of summary statistics enhances evidence of functional enrichment, Bioinformatics, vol.30, pp.2906-2914, 2014.

G. Kichaev, W. Y. Yang, S. Lindstrom, F. Hormozdiari, E. Eskin et al., Integrating functional data to prioritize causal variants in statistical fine-mapping studies, PLoS Genet, vol.10, p.1004722, 2014.

B. Bulik-sullivan, H. K. Finucane, V. Anttila, A. Gusev, F. R. Day et al., An atlas of genetic correlations across human diseases and traits, Nat. Genet, vol.47, pp.1236-1241, 2015.

K. Watanabe, S. Stringer, O. Frei, M. Umi?evi?-mirkov, C. De-leeuw et al., A global overview of pleiotropy and genetic architecture in complex traits, Nat. Genet, vol.51, pp.1339-1348, 2019.

Z. Liu and X. Lin, Multiple phenotype association tests using summary statistics in genome-wide association studies, Biometrics, vol.74, pp.165-175, 2018.

A. Cichonska, J. Rousu, P. Marttinen, A. J. Kangas, P. Soininen et al., metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis, Bioinformatics, vol.32, pp.1981-1989, 2016.

G. Qi and N. Chatterjee, Heritability informed power optimization (HIPO) leads to enhanced detection of genetic associations across multiple traits, PLoS Genet, vol.14, p.1007549, 2018.

Z. Wang, Q. Sha, and S. Zhang, Joint analysis of multiple traits using "optimal" maximum heritability test, PLoS One, vol.11, 2016.

X. Zhu, T. Feng, B. O. Tayo, J. Liang, J. H. Young et al., , 2015.

, Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension, Am. J. Hum. Genet, vol.96, pp.21-36

J. Kim, Y. Bai, and W. Pan, An adaptive association test for multiple phenotypes with GWAS summary statistics, Genet. Epidemiol, vol.39, pp.651-663, 2015.

M. A. Province and I. B. Borecki, A correlated meta-analysis strategy for data mining, OMIC" scans. Pac. Symp. Biocomput, pp.236-246, 2013.

D. Ray and M. Boehnke, Methods for meta-analysis of multiple traits using GWAS summary statistics, Genet. Epidemiol, vol.42, pp.134-145, 2018.

S. Van-der-sluis, D. Posthuma, and C. V. Dolan, TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies, PLoS Genet, vol.9, p.1003235, 2013.

P. F. O'reilly, C. J. Hoggart, Y. Pomyen, F. C. Calboli, P. Elliott et al., MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS, PLoS One, vol.7, p.34861, 2012.

X. Zhou and M. Stephens, Efficient multivariate linear mixed model algorithms for genome-wide association studies, Nat. Methods, vol.11, pp.407-409, 2014.

H. Aschard, B. J. Vilhjálmsson, N. Greliche, P. E. Morange, D. A. Trégouët et al., Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies, Am. J. Hum. Genet, vol.94, pp.662-676, 2014.

M. Geihs, Y. Yan, K. Walter, J. Huang, Y. Memari et al., An interactive genome browser of association results from the UK10K cohorts project, Bioinformatics, vol.31, pp.4029-4031, 2015.

T. Juliusdottir, K. Banasik, N. R. Robertson, R. Mott, and M. I. Mccarthy, Toppar: an interactive browser for viewing association study results, Bioinformatics, vol.34, pp.1922-1924, 2018.

R. J. Pruim, R. P. Welch, S. Sanna, T. M. Teslovich, P. S. Chines et al., LocusZoom: regional visualization of genome-wide association scan results, Bioinformatics, vol.26, pp.2336-2337, 2010.

E. A. Khramtsova and B. E. Stranger, Assocplots: a Python package for static and interactive visualization of multiple-group GWAS results, Bioinformatics, vol.33, pp.432-434, 2017.

P. Di-tommaso, M. , C. Floden, E. W. Barja, P. P. Palumbo et al., Nextflow enables reproducible computational workflows, Nat. Biotechnol, vol.35, pp.316-319, 2017.

Z. Liu and X. Lin, Multiple phenotype association tests using summary statistics in genome-wide association studies, Biometrics, vol.74, pp.165-175, 2018.

J. Yang, T. Ferreira, A. P. Morris, S. E. Medland, P. A. Madden et al., Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits, Nat. Genet, vol.44, pp.369-375, 2012.

T. Berisa and J. K. Pickrell, Approximately independent linkage disequilibrium blocks in human populations, Bioinformatics, vol.32, pp.283-285, 2016.

A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang et al., A global reference for human genetic variation, Nature, vol.526, pp.68-74, 2015.

H. Julienne, H. Shi, B. Pasaniuc, and H. Aschard, RAISS: robust and accurate imputation from summary statistics, Bioinformatics, vol.35, pp.4837-4839, 2019.

, Biological insights from 108 schizophrenia-associated genetic loci, Schizophrenia Working Group of the Psychiatric Genomics Consortium, vol.511, pp.421-427, 2014.

C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott et al., The UK Biobank resource with deep phenotyping and genomic data, Nature, vol.562, pp.203-209, 2018.

F. Prive, H. Aschard, A. Ziyatdinov, and M. G. Blum, Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr, Bioinformatics, vol.34, pp.2781-2787, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01858710

G. Yang, C. Sau, W. Lai, J. Cichon, and W. Li, USAT: a unified score-based association test for multiple phenotype-genotype analysis, Genet. Epidemiol, vol.344, pp.1173-1178, 2015.

A. Morrione, Grb10 proteins in insulin-like growth factor and insulin receptor signaling (review), Int. J. Mol. Med, vol.5, pp.151-154, 2000.

C. S. Rose, N. Grarup, N. T. Krarup, P. Poulsen, L. Wegner et al., A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads, Diabetologia, vol.52, pp.2122-2129, 2009.

C. A. Anderson, G. Boucher, C. W. Lees, A. Franke, M. D'amato et al., Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47, Nat. Genet, vol.43, pp.246-252, 2011.

C. J. Willer, Y. Li, and G. R. Abecasis, METAL: fast and efficient meta-analysis of genomewide association scans, Bioinformatics, vol.26, pp.2190-2191, 2010.

R. Magi and A. P. Morris, GWAMA: software for genome-wide association meta-analysis, Institut Pasteur user on, vol.11, 2010.