, Government's Investissements d'Avenir programme: Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (Grant no. ANR-10-LABX-62-IBEID to G, F.S

, the Belgian Development Cooperation (FA3 II VL control and FA3 project 95502 to J.C.D.), the Belgian Science Policy Office (TRIT, P7/41 to J.C.D.), the Flemish Fund for Scientific Research (G.0.B81.12 to J.C.D.), the INBEV-Baillet Latour foundation, and EWI (GEMINI and SINGLE grants to ITM SOFI-B to J.C.D.); the Czech Grant Agency (Grant 14-23986S to, J.L

S. M. Adl, The revised classification of eukaryotes, J Eukaryot Microbiol, vol.59, pp.429-493, 2012.
URL : https://hal.archives-ouvertes.fr/mnhn-02498504

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

J. D. Bangs, E. M. Brouch, D. M. Ransom, and J. L. Roggy, A soluble secretory reporter system in Trypanosoma brucei-studies on endoplasmic reticulum targeting, J Biol Chem, vol.271, pp.18387-18393, 1996.

G. L. Blatch and M. Lassle, The tetratricopeptide repeat: a structural motif mediating protein-protein interactions, Bioessays, vol.21, pp.932-939, 1999.

W. R. Boorstein, T. Ziegelhoffer, and E. A. Craig, Molecular evolution of the HSP70 multigene family, J Mol Evol, vol.38, pp.1-17, 1994.

C. Brochu, A. Haimeur, and M. Ouellette, The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania, Cell Stress Chaperones, vol.9, pp.294-303, 2004.

R. M. Campos, Distinct mitochondrial HSP70 homologues conserved in various Leishmania species suggest novel biological functions, Mol Biochem Parasitol, vol.160, pp.157-162, 2008.

C. E. Clayton, Life without transcriptional control?, From fly to man and back again, vol.21, pp.3917-3917, 2002.

A. Criscuolo and S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol Biol, vol.10, p.210, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02445904

M. Daugaard, M. Rohde, and M. Jaattela, The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions, FEBS Lett, vol.581, pp.3702-3710, 2007.

M. David, Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3' UTR and involves scanning of the 5' UTR, RNA, vol.16, pp.364-374, 2010.

T. Downing, Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance, Genome Res, vol.21, pp.2143-2156, 2011.

Z. Dragovic, S. A. Broadley, Y. Shomura, A. Bracher, and F. U. Hartl, Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s, EMBO J, vol.25, pp.2519-2528, 2006.

D. Droll, Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein, PLoS Pathog, vol.9, p.1003286, 2013.

R. D. Finn, HMMER web server: 2015 update, Nucleic Acids Res, vol.43, pp.30-38, 2015.

P. Flegontov, Paratrypanosoma is a novel early-branching trypanosomatid, Curr Biol, vol.23, pp.1787-1793, 2013.

C. Folgueira, C. Canavate, C. Chicharro, and J. M. Requena, Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species, Parasitology, vol.134, pp.369-377, 2007.

C. Folgueira, The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3'-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms, J Biol Chem, vol.280, pp.35172-35183, 2005.

C. Folgueira and J. M. Requena, A postgenomic view of the heat shock proteins in kinetoplastids, FEMS Microbiol Rev, vol.31, pp.359-377, 2007.

P. Forterre, The universal tree of life: an update, Front Microbiol, vol.6, p.717, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430756

C. S. Gassler, Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone, Proc Natl Acad Sci, vol.95, pp.15229-15234, 1998.

M. Gil, M. S. Zanetti, S. Zoller, and M. Anisimova, CodonPhyML: fast maximum likelihood phylogeny estimation under codon substitution models, Mol Biol Evol, vol.30, pp.1270-1280, 2013.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst Biol, vol.52, pp.696-704, 2003.

S. Guindon, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

R. S. Gupta and B. Singh, Phylogenetic analysis of 70-Kd heat-shock protein sequences suggests a chimeric origin for the eukaryotic cell-nucleus, Curr Biol, vol.4, pp.1104-1114, 1994.

V. Hampl, Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups, Proc Natl Acad Sci, vol.106, pp.3859-3864, 2009.

D. He, An alternative root for the eukaryote tree of life, Curr Biol, vol.24, pp.465-470, 2014.

S. Hem, Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses, Proteomics, vol.10, pp.3868-3883, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433567

A. L. Hughes, Nonlinear relationships among evolutionary rates identify regions of functional divergence in Heat-Shock Protein-70 genes, Mol Biol Evol, vol.10, pp.243-255, 1993.

H. Imamura, Evolutionary genomics of epidemic visceral Leishmaniasis in the Indian subcontinent, vol.12613, 2016.

A. C. Ivens, The genome of the kinetoplastid parasite, Leishmania major, Science, vol.309, pp.436-442, 2005.

A. Jensen, J. Curtis, J. Montgomery, E. Handman, and T. G. Theander, Molecular and immunological characterisation of the glucose regulated protein 78 of Leishmania donovani, BBActa-Protein Struct M, vol.1549, pp.73-87, 2001.

H. H. Kampinga and E. A. Craig, The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nat Rev Mol Cell Biol, vol.11, pp.579-592, 2010.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-780, 2013.

J. Kominek, J. Marszalek, C. Neuveglise, E. A. Craig, and B. L. Williams, The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective, Genome Biol Evol, vol.5, pp.2460-2477, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204300

S. Q. Le and O. Gascuel, An improved general amino acid replacement matrix, Mol Biol Evol, vol.25, pp.1307-1320, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324106

P. Lechat, E. Souche, and I. Moszer, SynTView-an interactive multi-view genome browser for next-generation comparative microorganism genomics, BMC Bioinformatics, vol.14, p.227, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00870285

K. Leifso, G. Cohen-freue, N. Dogra, A. Murray, and W. R. Mcmaster, Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed, Mol Biochem Parasit, vol.152, pp.35-46, 2007.

P. Leprohon, C. Fernandez-prada, E. Gazanion, R. Monte-neto, and M. Ouellette, Drug resistance analysis by next generation sequencing in Leishmania, Int J Parasitol Drugs Drug Resist, vol.5, pp.26-35, 2015.

J. Z. Li, X. G. Qian, and B. D. Sha, Heat shock protein 40: structural studies and their functional implications, Protein: Peptide Lett, vol.16, pp.606-612, 2009.

Q. L. Liu and W. A. Hendrickson, Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1, Cell, vol.131, pp.106-120, 2007.

F. J. Logan-klumpler, GeneDB-an annotation database for pathogens, Nucleic Acids Res, vol.40, pp.98-108, 2012.

C. A. Louw, M. H. Ludewig, J. Mayer, and G. L. Blatch, The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members, Parasitol Int, vol.59, pp.497-505, 2010.

A. Marchler-bauer, CDD: NCBI's conserved domain database, Nucleic Acids Res, vol.43, pp.222-226, 2015.

M. P. Mayer and B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell Mol Life Sci, vol.62, pp.670-684, 2005.

M. P. Mayer, Multistep mechanism of substrate binding determines chaperone activity of Hsp70, Nat Struct Biol, vol.7, pp.586-593, 2000.

A. Mckenna, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, 2010.

, Genome Res, vol.20, pp.1297-1303

M. A. Miller, Inducible resistance to oxidant stress in the protozoan Leishmania chagasi, J Biol Chem, vol.275, pp.33883-33889, 2000.

M. A. Morales, Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage, Proc Natl Acad Sci, vol.107, pp.8381-8386, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00476914

C. S. Peacock, Comparative genomic analysis of three Leishmania species that cause diverse human disease, Nat Genet, vol.39, pp.839-847, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169316

H. Pelham, Heat-shock and the sorting of Luminal Er proteins, EMBO J, vol.8, pp.3171-3176, 1989.

A. L. Pidoux and A. J. , Analysis of the Bip gene and identification of an Er retention signal in Schizosaccharomycespombe, EMBO J, vol.11, pp.1583-1591, 1992.

L. Quijada, M. Soto, C. Alonso, and J. M. Requena, Identification of a putative regulatory element in the 3'-untranslated region that controls expression of HSP70 in Leishmania infantum, Mol Biochem Parasitol, vol.110, pp.79-91, 2000.

H. Raviol, H. Sadlish, F. Rodriguez, M. P. Mayer, and B. Bukau, Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor, EMBO J, vol.25, pp.2510-2518, 2006.

J. M. Requena, A. M. Montalvo, and J. Fraga, Molecular chaperones of Leishmania: central players in many stress-related and -unrelated physiological processes, Biomed Res Int, vol.3013, p.26, 2015.

F. Rodríguez, J. L. Oliver, A. Marín, and J. R. Medina, The general stochastic model of nucleotide substitution, J Theor Biol, vol.142, pp.485-501, 1990.

M. B. Rogers, Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania, Genome Res, vol.21, pp.2129-2142, 2011.

S. Searle, M. V. Mccrossan, and D. F. Smith, Expression of a mitochondrial stress protein in the protozoan parasite Leishmania major, J Cell Sci, vol.104, pp.1091-1100, 1993.

S. Searle and D. F. Smith, Leishmania major-characterization and expression of a cytoplasmic stress-related protein, Exp Parasitol, vol.77, pp.43-52, 1993.

L. Shaner, R. Sousa, and K. A. Morano, Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1, Biochemistry, vol.45, pp.15075-15084, 2006.

A. Shonhai, A. G. Maier, J. M. Przyborski, and G. L. Blatch, Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis, Protein Pept Lett, vol.18, issue.2, pp.143-57, 2007.

L. D. Sibley, Invasion and intracellular survival by protozoan parasites, Immunol Rev, vol.240, pp.72-91, 2011.

M. Stanke, AUGUSTUS: ab initio prediction of alternative transcripts, Nucleic Acids Res, vol.34, pp.435-439, 2006.

G. J. Steel, D. M. Fullerton, J. R. Tyson, and C. J. Stirling, Coordinated activation of Hsp70 chaperones, Science, vol.303, pp.98-101, 2004.

W. C. Suh, C. Z. Lu, and C. A. Gross, Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ, J Biol Chem, vol.274, pp.30534-30539, 1999.

W. C. Suh, Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ, Proc Natl Acad Sci, vol.95, pp.15223-15228, 1998.

C. Syldatk, O. May, J. Altenbuchner, R. Mattes, and M. Siemann, Microbial hydantoinases-industrial enzymes from the origin of life?, Appl Microbiol Biot, vol.51, pp.293-309, 1999.

A. Szabo, The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE, Proc Natl Acad Sci, vol.91, pp.10345-10349, 1994.

H. Thorvaldsdottir, J. T. Robinson, and J. P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief Bioinform, vol.14, pp.178-192, 2013.

D. C. Torres, M. Ribeiro-alves, G. Romero, A. Davila, and E. Cupolillo, Assessment of drug resistance related genes as candidate markers for treatment outcome prediction of cutaneous leishmaniasis in Brazil, Acta Trop, vol.126, pp.132-141, 2013.

J. Tý?, M. M. Klingbeil, and J. Lukes, Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication, vol.6, pp.2425-2439, 2015.

M. Vogel, M. P. Mayer, and B. Bukau, Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker, J Biol Chem, vol.281, pp.38705-38711, 2006.

M. Wiesgigl and J. Clos, Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani, Mol Biol Cell, vol.12, pp.3307-3316, 2001.

T. A. Williams, Evolution: rooting the eukaryotic tree of life, Curr Biol, vol.24, pp.151-152, 2014.

W. L. Yau, Cyclosporin a treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability, PloS Neglect Trop D, vol.4, p.729, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433566

D. Zilberstein and M. Shapira, The role of pH and temperature in the development of Leishmania parasites, Annu Rev Microbiol, vol.48, pp.449-470, 1994.

A. Zilka, S. Garlapati, E. Dahan, V. Yaolsky, and M. Shapira, Developmental regulation of heat shock protein 83 in Leishmania, J Biol Chem, vol.276, pp.47922-47929, 2001.