M. C. Stensmyr, H. Dweck, A. Farhan, I. Ibba, A. Strutz et al., A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila, Cell, vol.151, pp.1345-1357, 2012.

M. G. Vázquez-martínez, M. H. Rodríguez, J. I. Arredondo-jiménez, J. D. Méndez-sanchez, J. G. Bond-compeán et al., Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico, J. Med. Entomol, vol.39, pp.825-832, 2002.

M. D. Bentley and J. F. Day, Chemical ecology and behavioral aspects of mosquito oviposition, Annu. Rev. Entomol, vol.34, pp.401-421, 1989.

L. Ponnusamy, N. Xu, S. Nojima, D. M. Wesson, C. Schal et al., Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti, Proc. Natl. Acad. Sci. USA 105, pp.9262-9267, 2008.

L. Ponnusamy, K. Böröczky, D. M. Wesson, C. Schal, and A. Cs, Bacteria stimulate hatching of yellow fever mosquito eggs, PLoS ONE, vol.6, 2011.

J. Huang, J. R. Miller, S. C. Chen, J. M. Vulule, and E. D. Walker, Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles, J. Med. Entomol, vol.43, pp.498-504, 2006.

Y. Wang, . Gilbreath-tm-3rd, P. Kukutla, G. Yan, and J. Xu, Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya, PLoS ONE, vol.6, 2011.

E. H. Polak and J. Provasi, Odor sensitivity to geosmin enantiomers, Chem. Senses, vol.17, pp.23-26, 1992.

P. J. Clyne, C. G. Warr, M. R. Freeman, D. Lessing, J. Kim et al., A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila, Neuron, vol.22, pp.327-338, 1999.

L. B. Vosshall, H. Amrein, P. S. Morozov, A. Rzhetsky, and A. R. , A spatial map of olfactory receptor expression in the Drosophila antenna, Cell, vol.96, pp.725-736, 1999.

R. Benton, K. S. Vannice, C. Gomez-diaz, and L. B. Vosshall, Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila, Cell, vol.136, pp.149-162, 2009.

M. Degennaro, C. S. Mcbride, L. Seeholzer, T. Nakagawa, E. J. Dennis et al., orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET, Nature, vol.498, pp.487-491, 2013.

M. C. Larsson, A. I. Domingos, W. D. Jones, M. E. Chiappe, H. Amrein et al., Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction, Neuron, vol.43, p.703, 2004.

W. W. Ja, G. B. Carvalho, E. M. Mak, N. N. De-la-rosa, A. Y. Fang et al., Prandiology of Drosophila and the CAFE assay, Proc. Natl. Acad. Sci. USA, vol.104, pp.8253-8256, 2007.

E. K. Lutz and T. S. Grewal, Computational and experimental insights into the chemosensory navigation of Aedes aegypti mosquito larvae, 2019.

I. Thiery, L. Nicolas, R. Rippka, T. De-marsac, and N. , Selection of cyanobacteria isolated from mosquito breeding sites as a potential food source for mosquito larvae, Appl. Environ. Microbiol, vol.57, pp.1354-1359, 1991.

A. Calteau, D. P. Fewer, A. Latifi, T. Coursin, T. Laurent et al., Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria, BMC Genomics, vol.15, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370484

L. L. Prieto-godino, R. Rytz, S. Cruchet, B. Bargeton, L. Abuin et al., Evolution of acid-sensing olfactory circuits in Drosophilids, Neuron, vol.93, pp.661-676, 2017.

R. Ignell, T. Dekker, M. Ghaninia, and H. Bs, Neuronal architecture of the mosquito deutocerebrum, J. Comp. Neurol, vol.493, pp.207-240, 2005.

M. Bui, J. Shyong, E. K. Lutz, T. Yang, M. Li et al., Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies, BMC Neurosci, vol.20, 2019.

C. Vinauger, C. Lahondère, G. H. Wolff, L. T. Locke, J. E. Liaw et al., Modulation of host learning in Aedes aegypti mosquitoes, Curr. Biol, vol.28, pp.333-344, 2018.

C. Lahondère, C. Vinauger, R. P. Okubo, G. Wolff, and O. S. Akbari, The olfactory basis of orchid pollination by mosquitoes, 2019.

J. C. Knight and C. Sa, Compounds affecting mosquito oviposition: structure-activity relationships and concentration effects, J. Am. Mosq. Control Assoc, vol.7, pp.37-41, 1991.

C. M. Baak-baak, A. D. Rodríguez-ramírez, J. E. García-rejón, S. Ríos-delgado, and T. Jl, Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti, J. Vector Ecol, vol.38, pp.175-181, 2013.

A. Afify, B. Horlacher, J. Roller, and C. G. Galizia, Different repellents for Aedes aegypti against blood-feeding and oviposition, PLoS ONE, vol.9, 2014.

N. D. Grubaugh, J. T. Ladner, M. Kraemer, G. Dudas, A. L. Tan et al., Genomic epidemiology reveals multiple introductions of Zika virus into the United States, Nature, vol.546, pp.401-405, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02626575

A. Afify and C. G. Galizia, Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol, Parasit. Vectors, vol.7, p.315, 2014.

G. Lu, C. G. Edwards, J. K. Fellman, D. S. Mattinson, and J. Navazio, Biosynthetic origin of geosmin in red beets (Beta vulgaris L.), J. Agric. Food Chem, vol.51, pp.1026-1029, 2003.

G. Lu, J. K. Fellman, C. G. Edwards, D. S. Mattinson, and J. Navazio, Quantitative determination of geosmin in red beets (Beta vulgaris L.) using headspace solid-phase microextraction, J. Agric. Food Chem, vol.51, pp.1021-1025, 2003.

J. Heukelbach, C. H. Alencar, A. A. Kelvin, W. K. De-oliveira, P. De-góes-cavalcanti et al., Zika virus outbreak in Brazil, J. Infect. Dev. Ctries, vol.10, pp.116-120, 2016.

B. J. Matthews, O. Dudchenko, S. B. Kingan, S. Koren, I. Antoshechkin et al., Improved reference genome of Aedes aegypti informs arbovirus vector control, Nature, vol.563, pp.501-507, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01969223

W. W. Carmichael, Cyanobacteria secondary metabolites-the cyanotoxins, J. Appl. Bacteriol, vol.72, pp.445-459, 1992.

J. Kiviranta and A. , Toxicity of the blue-green alga Oscillatoria agardhii to the mosquito Aedes aegypti and the shrimp Artemia salina, World J. Microbiol. Biotechnol, vol.10, pp.517-520, 1994.

A. Méjean, S. Mann, T. Maldiney, G. Vassiliadis, O. Lequin et al., Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline, J. Am. Chem. Soc, vol.131, pp.7512-7513, 2009.

R. Mazmouz, F. Chapuis-hugon, S. Mann, V. Pichon, A. Méjean et al., Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: identification of the cyr gene cluster and toxin analysis, Appl. Environ. Microbiol, vol.76, pp.4943-4949, 2010.

M. G. Krivosheina, On insect feeding on cyanobacteria, Paleontol. J, vol.42, pp.596-599, 2008.

J. Blanksteen, Nothing Beets Borscht: Jane's Russian Cookbook (Atheneum), 1974.

K. W. Beyenbach and R. Masia, Membrane conductances of principal cells in Malpighian tubules of Aedes aegypti, J. Insect Physiol, vol.48, pp.375-386, 2002.

J. C. Fiala, Reconstruct: a free editor for serial section microscopy, J. Microsc, vol.218, pp.52-61, 2005.

R. A. Consoli and R. L. De-oliveira, Principais Mosquitos de Importância Sanitária no Brasil, 1994.

. Al3, , pp.1-3

, Dynamics of the calcium response to geosmin (green trace) and the solvent control (dipropylene glycol [DPG], black trace) for the putative PD3 glomerulus. Lines are the mean

, AL atlas showing the tentatively identified PD3 glomerulus (green)

, The glomeruli showed significantly different dose response curves, Concentration dependency of glomeruli tentatively identified as PD3, AL3, and AM2 to their cognate odorants (geosmin, nonanal, and lilac aldehyde, respectively)

, Pseudocolor plot of ?F/F 0 calcium responses (0 to 1 scale) to beetroot peel and pulp

, Grey bar denotes the time course of odor stimulus. Traces are the mean; area is the SEM (n = 3 mosquitoes). Shown in the inset are mean responses to the extract. Letters denote significant differences between stimuli, PD3 responses (?F/F 0 ) to the extracts of the beet rind (brown)

, OIs of WT mosquitoes (20 mosquitoes per trial; n = 6 trials) from binary-choice tests between whole beetroot peel and pulp. Total number of eggs is as follows: 2,878; peel 322 ± 82 eggs, pulp 158 ± 41 (mean ± SEM). Boxplots and statistics as per Figure 1C are shown

, Brazil field site. Satellite image courtesy of Google Maps

, Oviposition trap constructed from painted PET bottles lined with filter paper used for the experiments in Brazil

, OIs from wild Brazilian mosquitoes offered a choice between control traps (water only) and traps baited with beetroot peel extract. Each data point represents a collection event

N. Beetroots, Beta vulgaris) ICA Supermarket, Lund N/A Defibrinated sheep blood Biosciences Ltd

P. Chemicals and R. ,