R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis et al., Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, vol.321, pp.960-964, 2008.

L. A. Marraffini and E. J. Sontheimer, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science, vol.322, pp.1843-1845, 2008.

J. E. Garneau, M. Dupuis, M. Villion, D. A. Romero, R. Barrangou et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, vol.468, pp.67-71, 2010.

U. Gophna, D. M. Kristensen, Y. I. Wolf, O. Popa, C. Drevet et al., No evidence of inhibition of horizontal gene transfer by CRISPR Cas on evolutionary timescales, ISME J, vol.9, pp.2021-2027, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01464867

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.526, pp.55-61, 2015.

F. Hille, H. Richter, S. P. Wong, M. Bratovi?, S. Ressel et al., The biology of CRISPR-Cas: backward and forward, Cell, vol.172, pp.1239-1259, 2018.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., An updated evolutionary classification of CRISPR Cas systems, Nat. Rev. Microbiol, vol.13, pp.722-736, 2015.

E. V. Koonin, K. S. Makarova, and F. Zhang, 2017) Diversity, classification and evolution of CRISPR-Cas systems, Curr. Opin. Microbiol, vol.37, pp.67-78

P. Mohanraju, K. S. Makarova, B. Zetsche, F. Zhang, E. V. Koonin et al., Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems, Science, vol.353, p.5147, 2016.

L. B. Harrington, D. Burstein, J. S. Chen, D. Paez-espino, E. Ma et al., Programmed DNA destruction by miniature CRISPR-Cas14 enzymes, Science, vol.842, pp.839-842, 2018.

W. X. Yan, W. X. Yan, P. Hunnewell, L. E. Alfonse, J. M. Carte et al., Functionally diverse type V CRISPR-Cas systems, Science, vol.7271, pp.1-9, 2018.

D. Burstein, L. Sun, C. Brown, I. Sharon, K. Anantharaman et al., Major bacterial lineages are essentially devoid of CRISPR-Cas viral defense systems, Nat. Commun, vol.7, p.10613, 2016.

J. S. Godde and A. Bickerton, The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes, J. Mol. Evol, vol.62, pp.718-729, 2006.

S. Chakraborty, A. P. Snijders, R. Chakravorty, M. Ahmed, A. M. Tarek et al., Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria, Mol. Phylogenet. Evol, vol.56, pp.878-887, 2010.

I. Scholz, S. J. Lange, S. Hein, W. R. Hess, and R. Backofen, CRISPR-cas systems in the cyanobacterium synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein, PLoS One, vol.8, p.56470, 2013.

A. M. Millen, P. Horvath, P. Boyaval, and D. A. Romero, Mobile CRISPR/Cas-mediated bacteriophage resistance in lactococcus lactis, PLoS One, vol.7, p.51663, 2012.

P. Guo, Q. Cheng, P. Xie, Y. Fan, W. Jiang et al., Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1, Acta Biochim. Biophys. Sin. (Shanghai), vol.43, pp.630-639, 2011.

, Nucleic Acids Research, vol.48, issue.2, p.759, 2020.

K. D. Seed, D. W. Lazinski, S. B. Calderwood, and A. Camilli, A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity, Nature, vol.494, pp.489-491, 2013.

J. E. Peters, K. S. Makarova, S. Shmakov, and E. V. Koonin, Recruitment of CRISPR-Cas systems by Tn7-like transposons, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.7358-7366, 2017.

G. Faure, S. A. Shmakov, W. X. Yan, D. R. Cheng, D. A. Scott et al., CRISPR-Cas in mobile genetic elements: counter-defence and beyond, Nat. Rev. Microbiol, vol.17, pp.513-525, 2019.

A. Pawluk, A. R. Davidson, and K. L. Maxwell, Anti-CRISPR: discovery, mechanism and function, Nat. Rev. Microbiol, vol.16, pp.12-17, 2017.

A. L. Borges, A. R. Davidson, and J. Bondy-denomy, The discovery, mechanisms, and evolutionary impact of anti-CRISPRs, 2017.

, Annu. Rev. Virol, vol.4, pp.37-59

S. Silas, P. Lucas-elio, S. A. Jackson, A. Aroca-crevillén, L. L. Hansen et al., Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems, Elife, vol.6, p.27601, 2017.

S. Shmakov, A. Smargon, D. Scott, D. Cox, N. Pyzocha et al., Diversity and evolution of class 2 CRISPR Cas systems, Nat. Rev. Microbiol, vol.15, pp.169-182, 2017.

K. Mcnair, B. A. Bailey, and R. A. Edwards, PHACTS, a computational approach to classifying the lifestyle of phages, Bioinformatics, vol.28, pp.614-618, 2012.

S. Roux, F. Enault, B. L. Hurwitz, and M. B. Sullivan, VirSorter: mining viral signal from microbial genomic data, PeerJ, pp.1-20, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01557667

M. Touchon, A. Bernheim, and E. P. Rocha, Genetic and life-history traits associated with the distribution of prophages in bacteria, ISME J, vol.10, pp.2744-2754, 2016.

D. Couvin, A. Bernheim, C. Toffano-nioche, M. Touchon, J. Michalik et al., CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins, Nucleic Acids Res, vol.46, pp.246-251, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02098389

S. S. Abby, B. Néron, H. Ménager, M. Touchon, and E. P. Rocha, MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems, PLoS One, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

O. Rendueles, J. A. De-sousa, A. Bernheim, M. Touchon, and E. P. Rocha, Genetic exchanges are more frequent in bacteria encoding capsules, PLoS Genet, vol.14, pp.1-25, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02012595

K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res, vol.30, pp.3059-3066, 2002.

A. Criscuolo and S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol. Biol, vol.10, p.210, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02445904

A. Filipski, O. Murillo, A. Freydenzon, K. Tamura, and S. Kumar, Prospects for building large timetrees using molecular data with incomplete gene coverage among species, Mol. Biol. Evol, vol.31, pp.2542-2550, 2014.

M. N. Price, P. S. Dehal, and A. P. Arkin, Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix, Mol. Biol. Evol, vol.26, pp.1641-1650, 2009.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2 -approximately maximum-likelihood trees for large alignments, PLoS One, vol.5, p.9490, 2010.

J. Felsenstein, PHYLIP (Phylogeny Inference Package) version 3.6. Dep, Genome Sci. Univ, 2001.

A. B. Crawley, J. R. Henriksen, and R. Barrangou, CRISPRdisco: an automated pipeline for the discovery and analysis of CRISPR-Cas systems, Cris. J, vol.1, 2018.

M. Pagel and A. Meade, Bayesian analysis of correlated evolution of discrete characters by reversible jump Markov chain Monte Carlo, Am. Nat, vol.167, pp.808-825, 2013.

E. S. Lander, The heroes of CRISPR, Cell, vol.164, pp.18-28, 2015.

S. A. Shmakov, E. V. Koonin, K. V. Severinov, Y. I. Wolf, and K. S. Makarova, Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.5307-5316, 2018.

A. Toms and R. Barrangou, On the global CRISPR array behavior in class I systems, Biol. Direct, vol.12, p.20, 2017.

C. R. Hale, P. Zhao, S. Olson, M. O. Duff, B. R. Graveley et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, vol.139, pp.945-956, 2009.

Q. Zhang and Y. Ye, Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements, BMC Bioinformatics, vol.18, p.92, 2017.

G. Faure, S. A. Shmakov, W. X. Yan, D. R. Cheng, D. A. Scott et al., CRISPR-Cas in mobile genetic elements: counter-defence and beyond, Nat. Rev. Microbiol, vol.17, pp.513-525, 2019.

S. Anupama, A. R. Mp, M. Gurusaran, P. Radha, D. K. Ks et al., Evolutionary analysis of CRISPRs in archaea: an evidence for horizontalGene Transfer, J. Proteomics Bioinform, vol.9, 2014.

K. S. Makarova, A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis, Nucleic Acids Res, vol.30, pp.482-496, 2002.

A. Stern, L. Keren, O. Wurtzel, G. Amitai, and R. Sorek, Self-targeting by CRISPR: gene regulation or autoimmunity?, Trends Genet, vol.26, pp.335-340, 2010.

A. Bernheim, D. Bikard, M. Touchon, and E. P. Rocha, A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria, Philos. Trans. R. Soc. B Biol. Sci, vol.374, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02329742

R. H. Staals, S. A. Jackson, A. Biswas, S. J. Brouns, C. M. Brown et al., Interference dominates and amplifies spacer acquisition in a native CRISPR-Cas system, Nat. Commun, vol.23, pp.127-135, 2016.

A. D. Weinberger, C. L. Sun, M. M. Pluci?ski, V. J. Denef, B. C. Thomas et al., Persisting viral sequences shape microbial CRISPR-based immunity, PLoS Comput. Biol, vol.8, p.1002475, 2012.

E. Mick, A. Stern, and R. Sorek, Holding a grudge, RNA Biol, vol.10, pp.900-906, 2013.

C. L. Sun, B. C. Thomas, R. Barrangou, and J. F. Banfield, Metagenomic reconstructions of bacterial CRISPR loci constrain population histories, ISME J, vol.10, pp.1-13, 2015.

A. Bernheim, A. Calvo-villamanan, C. Basier, E. P. Rocha, and D. Bikard, Inhibition of NHEJ repair by type II-A CRISPR-Cas systems, Nat. Commun, vol.8, p.170647, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01967501

M. Touchon, L. Bobay, and E. P. Rocha, The chromosomal accommodation and domestication of mobile genetic elements, Curr. Opin. Microbiol, vol.22, pp.22-29, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01122287

J. Grainy, S. Garrett, B. R. Graveley, P. Terns, and M. , CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2, Nucleic Acids Res, vol.47, pp.7518-7531, 2019.

J. L. Weissman, W. F. Fagan, and P. L. Johnson, Selective maintenance of multiple CRISPR arrays across prokaryotes, Cris. J, vol.1, pp.405-413, 2018.

A. Martynov, K. Severinov, and I. Ispolatov, Optimal number of spacers in CRISPR arrays, PLoS Comput. Biol, vol.13, pp.1-23, 2017.

A. Kupczok, G. Landan, and T. Dagan, The contribution of genetic recombination to CRISPR array evolution, Genome Biol. Evol, vol.7, pp.1925-1939, 2015.

A. Varble, S. Meaden, R. Barrangou, E. R. Westra, and L. A. Marraffini, Recombination between phages and CRISPR?cas loci facilitates horizontal gene transfer in staphylococci, Nat. Microbiol, vol.4, pp.956-963, 2019.

B. Al-shayeb, R. Sachdeva, L. X. Chen, F. Ward, P. Munk et al., Clades of huge phage from across Earth's ecosystems, 2019.

R. Pinilla-redondo, D. Mayo-muñoz, J. Russel, and R. A. Garrett, Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids, 2018.

A. Özcan, P. Pausch, A. Linden, A. Wulf, K. Schühle et al., , 2019.

, CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum, Nat. Microbiol, vol.4, pp.89-96

M. Touchon and E. P. Rocha, The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella, PLoS One, vol.5, p.11126, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01374940

C. Almendros, N. M. Guzmán, J. García-martínez, and F. J. Mojica, Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems, Nat. Microbiol, vol.1, p.16081, 2016.

A. Chevallereau, S. Meaden, S. Van-houte, E. R. Westra, and C. Rollie, The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity, Philos. Trans. R. Soc. B Biol. Sci, vol.374, 2019.

P. E. Burby and L. A. Simmons, MutS2 promotes homologous recombination in Bacillus subtilis Peter, J. Bacteriol, vol.199, pp.682-698, 2017.

P. H. Oliveira, M. Touchon, J. Cury, and E. P. Rocha, The chromosomal organization of horizontal gene transfer in bacteria, Nat. Commun, vol.8, pp.1-10, 2017.

K. S. Makarova, Y. I. Wolf, S. Snir, and E. V. Koonin, Defense islands in bacterial and archaeal genomes and prediction of novel defense systems, J. Bacteriol, vol.193, pp.6039-6056, 2011.

S. Doron, S. Melamed, G. Ofir, A. Leavitt, A. Lopatina et al., Systematic discovery of antiphage defense systems in the microbial pangenome, Science, p.4120, 2018.

A. J. Meeske, S. Nakandakari-higa, and L. A. Marraffini, Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage, Nature, vol.570, pp.241-245, 2019.

F. Hille and E. Charpentier, CRISPR-Cas: biology, mechanisms and relevance, Philos. Trans. R Soc. Lond. B Biol. Sci, vol.371, 2016.

N. D. Marino, J. Y. Zhang, A. L. Borges, A. A. Sousa, L. M. Leon et al., Discovery of widespread type I and type V CRISPR-Cas inhibitors, Science, vol.362, pp.240-242, 2018.

G. J. Knott, B. W. Thornton, M. J. Lobba, J. Liu, B. Al-shayeb et al., Broad-spectrum enzymatic inhibition of CRISPR-Cas12a, Nat. Struct. Mol. Biol, vol.26, pp.315-321, 2019.

L. Dong, X. Guan, N. Li, F. Zhang, Y. Zhu et al., An anti-CRISPR protein disables type V Cas12a by acetylation, Nat. Struct. Mol. Biol, vol.26, pp.308-314, 2019.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., A unified resource for tracking anti-CRISPR names, Nat. Rev. Microbiol, vol.13, pp.722-736, 2015.