P. Röthlisberger and M. Hollenstein, Aptamer Chemistry, Adv. Drug Deliv. Rev, vol.134, pp.3-21, 2018.

A. I. Taylor, V. B. Pinheiro, M. J. Smola, A. S. Morgunov, S. Peak-chew et al., Catalysts from synthetic genetic polymers, Nature, vol.518, pp.427-430, 2015.

M. Hocek, Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription, Accounts Chem. Res, vol.52, pp.1730-1737, 2019.

M. Hollenstein, Nucleic acid enzymes based on functionalized nucleosides, Curr. Opin. Chem. Biol, vol.52, pp.93-101, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02185135

A. Goyenvalle, G. Griffith, A. Babbs, S. E. Andaloussi, K. Ezzat et al., Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers, Nat. Med, vol.21, pp.270-275, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02407968

M. R. Dunn, R. M. Jimenez, and J. C. Chaput, Analysis of aptamer discovery and technology, Nat. Rev. Chem, vol.1, p.76, 2017.

C. Gasse, M. Zaarour, S. Noppen, M. Abramov, P. Marliere et al., Modulation of BACE1 Activity by Chemically Modified Aptamers, vol.19, pp.754-763, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02291360

V. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Renders et al.,

P. Mclaughlin, P. Herdewijn, and . Holliger, Synthetic Genetic Polymers Capable of Heredity and Evolution, Science, vol.336, pp.341-344, 2012.

M. Flamme, L. K. Mckenzie, I. Sarac, and M. Hollenstein, Chemical methods for the modification of RNA, Methods, pp.64-82, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02160204

E. Eremeeva, A. Fikatas, L. Margamuljana, M. Abramov, D. Schols et al., Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor, Nucleic Acids Res, vol.47, pp.4927-4939, 2019.

P. Chidchob, D. Offenbartl-stiegert, D. Mccarthy, X. Luo, and J. ,

S. Li, H. F. Howorka, and . Sleiman, Spatial Presentation of Cholesterol Units on a DNA Cube as a Determinant of Membrane Protein-Mimicking Functions, J. Am. Chem. Soc, vol.141, pp.1100-1108, 2019.

K. E. Bujold, A. Lacroix, and H. F. Sleiman, DNA Nanostructures at the Interface with Biology, issue.4, pp.495-521, 2018.

M. Kimoto, R. Yamashige, K. Matsunaga, S. Yokoyama, and I. ,

. Hirao, Generation of high-affinity DNA aptamers using an expanded genetic alphabet, Nat. Biotechnol, vol.31, p.453, 2013.

Y. Zhang, J. L. Ptacin, E. C. Fischer, H. R. Aerni, C. E. Caffaro et al., A semisynthetic organism that stores and retrieves increased genetic information, Nature, pp.644-647, 2017.

D. A. Malyshev, K. Dhami, T. Lavergne, T. J. Chen, N. Dai et al., A semi-synthetic organism with an expanded genetic alphabet, Nature, vol.509, pp.385-388, 2014.

D. A. Malyshev and F. E. Romesberg, The Expanded Genetic Alphabet, Angew. Chem. Int. Ed, vol.54, pp.11930-11944, 2015.

S. Hoshika, N. A. Leal, M. J. Kim, M. S. Kim, N. B. Karalkar et al., A genetic system with eight building blocks, vol.363, pp.884-887, 2019.

A. W. Feldman, V. T. Dien, R. J. Karadeema, E. C. Fischer, Y. B. You et al., Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism, J. Am. Chem. Soc, vol.141, pp.10644-10653, 2019.

I. Singh, R. Laos, S. Hoshika, S. A. Benner, and M. M. Georgiadis, Snapshots of an evolved DNA polymerase pre-and postincorporation of an unnatural nucleotide, Nucleic Acids Res, vol.46, pp.7977-7988, 2018.

M. Kimoto, Y. W. Lim, and I. Hirao, Molecular affinity rulers: systematic evaluation of DNA aptamers for their applicabilities in ELISA, Nucleic Acids Res, vol.47, pp.8362-8374, 2019.

J. Müller, Nucleic acid duplexes with metal-mediated base pairs and their structures, Coord. Chem. Rev, vol.393, pp.37-47, 2019.

T. Kobayashi, Y. Takezawa, A. Sakamoto, and M. Shionoya, Enzymatic synthesis of ligand-bearing DNAs for metal-mediated base pairing utilising a template-independent polymerase, Chem. Commun, vol.52, pp.3762-3765, 2016.

E. K. Kim and C. Switzer, Polymerase Recognition of a Watson-Crick-Like Metal-Mediated Base Pair: Purine-2,6-Dicarboxylate center dot Copper(II)center dot Pyridine, ChemBioChem, vol.14, pp.2403-2407, 2013.

C. Kaul, M. Muller, M. Wagner, S. Schneider, and T. Carell, Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair, Nat. Chem, vol.3, pp.794-800, 2011.

F. Levi-acobas, P. Röthlisberger, I. Sarac, P. Marliere, P. Herdewijn et al., On the Enzymatic Formation of Metal Base Pairs with Thiolated and pK(a)-Perturbed Nucleotides, ChemBioChem, 2019.

P. Röthlisberger, F. Levi-acobas, I. Sarac, P. Marliere, P. Herdewijn et al., Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide, J. Inorg. Biochem, vol.191, pp.154-163, 2019.

P. Röthlisberger, F. Levi-acobas, I. Sarac, P. Marlière, P. Herdewijn et al., On the enzymatic incorporation of an imidazole nucleotide into DNA, Org. Biomol. Chem, vol.15, pp.4449-4455, 2017.

Y. Takezawa, T. Nakama, and M. Shionoya, Enzymatic Synthesis of Cu(II)-Responsive Deoxyribozymes through Polymerase Incorporation of Artificial Ligand-Type Nucleotides, J. Am. Chem. Soc, vol.141, pp.19342-19350, 2019.

Y. K. Zhang, B. M. Lamb, A. W. Feldman, A. X. Zhou, and T. ,

L. J. Lavergne, F. E. Li, and . Romesberg, A semisynthetic organism engineered for the stable expansion of the genetic alphabet, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.1317-1322, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02178162

L. Q. Zhang, Z. Y. Yang, K. Sefah, K. M. Bradley, S. Hoshika et al., Evolution of Functional Six-Nucleotide DNA, J. Am. Chem. Soc, vol.137, pp.6734-6737, 2015.

L. Q. Zhang, Z. Y. Yang, T. L. Trinh, I. T. Teng, S. Wang et al.,

M. S. Mclendon, Y. Kim, C. Wu, Y. Cui, W. J. Liu et al., Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution, Angew. Chem. Int. Ed, vol.55, pp.12372-12375, 2016.

C. Brotschi, G. Mathis, and C. J. Leumann, Bipyridyl-and biphenyl-DNA: A recognition motif based on interstrand aromatic stacking, Chem. Eur. J, vol.11, pp.1911-1923, 2005.

C. Brotschi, A. Haberli, and C. J. Leumann, A stable DNA duplex containing a non-hydrogen-bonding and non-shape-complementary base couple: Interstrand stacking as the stability determining factor, Angew. Chem. Int. Ed, vol.40, pp.3012-3014, 2001.

C. Brotschi and C. J. Leumann, DNA with hydrophobic base substitutes: A stable, zipperlike recognition motif based on interstrand-stacking interactions, Angew. Chem. Int. Ed, vol.42, pp.1655-1658, 2003.

Z. Johar, A. Zahn, C. J. Leumann, and B. Jaun, Solution structure of a DNA duplex containing a biphenyl pair, Chem. Eur. J, vol.14, pp.1080-1086, 2008.

P. Roethlisberger, V. Kaliginediand, and C. J. Leumann, Modulation of Excess Electron Transfer through LUMO Gradients in DNA Containing Phenanthrenyl Base Surrogates, Chem. Eur. J, vol.23, pp.2022-2025, 2017.

J. Frommer, B. Karg, K. Weisz, and S. Muller, Preparation and characterization of pyrene modified uridine derivatives as potential electron donors in RNA, Org. Biomol. Chem, vol.16, pp.7663-7673, 2018.

L. Antusch, N. Gass, and H. A. Wagenknecht, Elucidation of the Dexter-Type Energy Transfer in DNA by Thymine-Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides, Angew. Chem. Int. Ed, vol.56, pp.1385-1389, 2017.

C. Brotschi and C. J. Leumann, RNA duplexes with biphenyl substituents as base replacements are less stable than DNA duplexes, Chem. Commun, pp.2023-2025, 2005.

M. Nakamura, T. Takada, and K. Yamana, Controlling Pyrene Association in DNA Duplexes by B-to Z-DNA Transitions, ChemBioChem, vol.20, pp.2949-2954, 2019.

P. Roethlisberger, F. Wojciechowski, and C. J. Leumann, Enhancement of Excess Electron Transfer Efficiency in DNA Containing a Phenothiazine Donor and Multiple Stable Phenanthrenyl Base Pairs, Chem. Eur. J, vol.19, pp.11518-11521, 2013.

D. G. Singleton, R. Hussain, G. Siligardi, P. Kumar, and P. ,

N. Hrdlicka, E. Berova, and . Stulz, Increased duplex stabilization in porphyrin-LNA zipper arrays with structure dependent exciton coupling, Org. Biomol. Chem, vol.14, pp.149-157, 2016.

E. Batzner, Y. Liang, C. Schweigert, A. N. Unterreiner, and H. A. Wagenknecht, Acceleration of Long-Range Photoinduced Electron Transfer through DNA by Hydroxyquinolines as Artificial Base Pairs, ChemPhysChem, vol.16, pp.1607-1612, 2015.

K. M. Chan, W. Xu, H. Kwon, A. M. Kietrys, and E. T. Kool, Luminescent Carbon Dot Mimics Assembled on DNA, J. Am. Chem. Soc, vol.139, pp.13147-13155, 2017.

D. L. Wilson and E. T. Kool, Fluorescent Probes of DNA Repair, ACS Chem. Biol, vol.13, pp.1721-1733, 2018.

D. L. Wilson, A. A. Beharry, A. Srivastava, T. R. O'connor, and E. T. ,

. Kool, Fluorescence Probes for ALKBH2 Allow the Measurement of DNA Alkylation Repair and Drug Resistance Responses, Angew. Chem. Int. Ed, vol.57, pp.12896-12900, 2018.

M. Nakamura, M. Fukuda, T. Takada, and K. Yamana, Highly ordered pyrene pi-stacks on an RNA duplex display static excimer fluorescence, Org. Biomol. Chem, vol.10, pp.9620-9626, 2012.

A. R. Rovira, A. Fin, and Y. Tor, Expanding a fluorescent RNA alphabet: synthesis, photophysics and utility of isothiazole-derived purine nucleoside surrogates, Chem. Sci, vol.8, pp.2983-2993, 2017.

W. Xu, K. M. Chan, and E. T. Kool, Fluorescent nucleobases as tools for studying DNA and RNA, Nat. Chem, vol.9, pp.1043-1055, 2017.

D. Baumstark and H. A. Wagenknecht, Fluorescent hydrophobic zippers inside duplex DNA: Interstrand stacking of perylene-3,4 : 9,10-tetracarboxylic acid bisimides as artificial DNA base dyes, Chem. Eur. J, vol.14, pp.6640-6645, 2008.

T. Nguyen, A. Brewer, and E. Stulz, Duplex Stabilization and Energy Transfer in Zipper Porphyrin-DNA, Angew. Chem. Int. Ed, vol.48, pp.1974-1977, 2009.

Y. G. Xiang, Q. Y. Zhang, Z. B. Li, and H. Chen, Role of electrostatic complementarity between perylenediimide and porphyrin in highly stabilized GNA, Mater. Sci. Eng. C-Mater. Biol. Appl, vol.70, pp.1156-1162, 2017.

E. Meggers and L. Zhang, Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid, Acc. Chem. Res, vol.43, pp.1092-1102, 2010.

M. Nakamura, Y. Matsui, T. Takada, and K. Yamana, Chromophore Arrays Constructed in the Major Groove of DNA Duplexes Using a Post-Synthetic Strategy, ChemistrySelect, vol.4, pp.1525-1529, 2019.

V. T. Dien, M. Holcomb, A. W. Feldman, E. C. Fischer, T. J. Dwyer et al., Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet, J. Am. Chem. Soc, vol.140, pp.16115-16123, 2018.

K. Betz, M. Kimoto, K. Diederichs, I. Hirao, and A. Marx, Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair, Angew. Chem. Int. Ed, vol.56, pp.12000-12003, 2017.

K. Hamashima, M. Kimoto, and I. Hirao, Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology, Curr. Opin. Chem. Biol, vol.46, pp.108-114, 2018.

P. Roethlisberger, A. Istrate, M. J. Lopez, R. Visini, A. Stocker et al., X-ray structure of a lectinbound DNA duplex containing an unnatural phenanthrenyl pair, Chem. Commun, vol.52, pp.4749-4752, 2016.

J. Ludwig and F. Eckstein, Rapid and efficient synthesis of nucleoside 5'-0-(1-thiotriphosphates), 5'-triphosphates and 2',3'-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one, J. Org. Chem, vol.54, pp.631-635, 1989.

A. Zahn and C. J. Leumann, Synthesis of functionalized biphenyl-Cnucleosides and their incorporation into oligodeoxynucleotides, Bioorg. Med. Chem, vol.14, pp.6174-6188, 2006.

A. Zahn and C. J. Leumann, Recognition properties of donor-and acceptor-modified biphenyl-DNA, Chem. Eur. J, vol.14, pp.1087-1094, 2008.

P. Röthlisberger, F. Levi-acobas, I. Sarac, R. Ricoux, and J. ,

P. Mahy, P. Herdewijn, M. Marliere, and . Hollenstein, Incorporation of a minimal nucleotide into DNA, Tetrahedron Lett, vol.59, pp.4241-4244, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02012227

T. J. Matray and E. T. Kool, A specific partner for abasic damage in DNA, Nature, vol.399, pp.704-708, 1999.

S. Nakano, Y. Uotani, Y. Sato, H. Oka, M. Fujii et al., Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules, Nucleic Acids Res, vol.41, pp.8581-8590, 2013.

E. A. Motea, I. Lee, and A. J. Berdis, Insights into the Roles of Desolvation and pi-Electron Interactions during DNA Polymerization, ChemBioChem, vol.14, pp.489-498, 2013.

M. Flamme, P. Röthlisberger, F. Levi-acobas, M. Chawla, R. Oliva et al., Enzymatic Formation of an Artificial Base Pair Using a Modified Adenine Nucleoside Triphosphate, ChemRxiv, 2019.

A. Horhota, K. Y. Zou, J. K. Ichida, B. Yu, L. W. Mclaughlin et al., Kinetic analysis of an efficient DNAdependent TNA polymerase, J. Am. Chem. Soc, vol.127, pp.7427-7434, 2005.

S. Tabor and C. C. Richardson, Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage-t7 DNApolymerase and escherichia-coli DNA-polymerase-i, Proc. Natl. Acad. Sci. U. S. A, vol.86, pp.4076-4080, 1989.

Y. K. Chang, Y. P. Huang, X. X. Liu, T. P. Ko, Y. Bessho et al., Human DNA Polymerase mu Can Use a Noncanonical Mechanism for Multiple Mn2+-Mediated Functions, J. Am. Chem. Soc, vol.141, pp.8489-8502, 2019.

S. Vichier-guerre, L. Dugue, and S. , Pochet, 2'-Deoxyribonucleoside 5'-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates, Org. Biomol. Chem, vol.17, pp.290-301, 2019.

I. Sarac and M. Hollenstein, Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids, ChemBioChem, vol.20, pp.860-871, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02012218

L. Tang, L. A. Navarro, A. Chilkoti, and S. Zauscher, High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation, Angew. Chem. Int. Ed, vol.56, pp.6778-6782, 2017.

M. Hollenstein, F. Wojciechowski, and C. J. Leumann, Polymerase incorporation of pyrene-nucleoside triphosphates, Bioorg. Med. Chem. Lett, vol.22, pp.4428-4430, 2012.

Y. J. Cho and E. T. Kool, Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone, ChemBioChem, issue.7, pp.669-672, 2006.

S. V. Vasilyeva, N. A. Kuznetsov, A. S. Kuznetsova, J. G. Khalyavina, D. A. Tropina et al., DNA fluorescent labeling with naphtho 1,2,3-cd indol-6(2H)-one for investigation of protein-DNA interactions, Bioorg. Chem, vol.72, pp.268-272, 2017.

A. Johnson, A. Karimi, and N. W. Luedtke, Enzymatic Incorporation of a Coumarin-Guanine Base Pair, Angew. Chem. Int. Ed, 2019.

Y. Li, A. Fin, L. Mccoy, and Y. Tor, Polymerase-Mediated Site-Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA, Angew. Chem. Int. Ed, vol.56, pp.1303-1307, 2017.

T. J. Chen, N. Hongdilokkul, Z. X. Liu, R. Adhikary, S. S. Tsuen et al., Evolution of thermophilic DNA polymerases for the recognition and amplification of C2 '-modified DNA, Nat. Chem, vol.8, pp.557-563, 2016.

A. Marx and K. Betz, The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases, Chem. Eur. J, vol.26, pp.3446-3463, 2020.