B. Ju, Q. Zhang, X. Ge, R. Wang, J. Yu et al., Potent human neutralizing antibodies elicited by SARS-CoV-2 infection, vol.2020

S. Khan, R. Nakajima, A. Jain, R. R. De-assis, A. Jasinskas et al., Analysis of Serologic Cross-Reactivity Between Common Human Coronaviruses and SARS-CoV-2 Using Coronavirus Antigen Microarray, vol.2020

J. Zhao, Q. Yuan, H. Wang, W. Liu, X. Liao et al., Antibody Responses to SARS-CoV-2 in Patients of Novel Coronavirus Disease, 2019.

F. Wu, A. Wang, M. Liu, Q. Wang, J. Chen et al., Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications, vol.2020

Q. Long, H. Deng, J. Chen, J. Hu, B. Liu et al., Antibody responses to SARS-CoV-2 in COVID-19 patients: The perspective application of serological tests in clinical practice, vol.2020

N. M. Okba, M. A. Müller, W. Li, C. Wang, C. H. Geurtsvankessel et al., Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease, Patients. Emerg. Infect, 2019.

A. Bootz, A. Karbach, J. Spindler, B. Kropff, N. Reuter et al., Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus, PLoS Pathog, vol.13, 2017.

P. A. Piedra, A. M. Jewell, S. G. Cron, R. L. Atmar, and W. Paul-glezen, Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: Establishment of minimum protective threshold levels of serum neutralizing antibodies, vol.21, pp.3479-3482, 2003.

K. Hedestam, G. B. Fouchier, R. A. Phogat, S. Burton, D. R. Sodroski et al., The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus, Nat. Rev. Microbiol, vol.6, pp.143-155, 2008.

B. M. Gunn, W. H. Yu, M. M. Karim, J. M. Brannan, A. S. Herbert et al., A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus, Cell Host Microbe, vol.24, pp.221-233, 2018.

H. Lv, N. C. Wu, O. T. Tsang, .. Yuan, M. Perera et al., Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. bioRxiv 2020

D. Pinto, Y. Park, M. Beltramello, A. C. Walls, M. A. Tortorici et al., Structural and functional analysis of a potent sarbecovirus neutralizing antibody, vol.2020

K. K. To, A. J. Zhang, I. F. Hung, T. Xu, W. C. Ip et al., High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza, Clin. Vaccine Immunol, vol.19, pp.1012-1018, 2012.

M. D. Co, M. Terajima, S. J. Thomas, R. G. Jarman, K. Rungrojcharoenkit et al., Relationship of preexisting influenza hemagglutination inhibition, complement-dependent lytic, and antibody-dependent cellular cytotoxicity antibodies to the development of clinical illness in a prospective study of A(H1N1)pdm09 influenza in children, Viral Immunol, vol.27, pp.375-382, 2014.

K. A. Callow, Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection, J. Hyg, vol.95, pp.173-189, 1985.

D. Corti, J. Zhao, M. Pedotti, L. Simonelli, S. Agnihothram et al., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus, Proc. Natl. Acad. Sci, vol.112, pp.10473-10478, 2015.

V. D. Menachery, B. L. Yount, A. C. Sims, K. Debbink, S. S. Agnihothram et al., SARS-like WIV1-CoV poised for human emergence, Proc. Natl. Acad. Sci, vol.113, pp.3048-3053, 2016.

B. Rockx, D. Corti, E. Donaldson, T. Sheahan, K. Stadler et al., Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge, J. Virol, vol.82, pp.3220-3235, 2008.

K. Subbarao, J. Mcauliffe, L. Vogel, G. Fahle, S. Fischer et al., Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice, J. Virol, vol.78, pp.3572-3577, 2004.

S. U. Kapadia, J. K. Rose, E. Lamirande, L. Vogel, K. Subbarao et al., Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine, Virology, vol.340, pp.174-182, 2005.

K. A. Callow, H. F. Parry, M. Sergeant, and D. A. Tyrrell, The time course of the immune response to experimental coronavirus infection of man, Epidemiol. Infect, vol.105, pp.435-446, 1990.

S. E. Reed, The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E-related strains, J. Med. Virol, vol.13, pp.179-192, 1984.

Y. O. Soo, Y. Cheng, R. Wong, D. S. Hui, C. K. Lee et al., Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients, Clin. Microbiol. Infect, vol.10, pp.676-678, 2004.

Y. Cheng, R. Wong, Y. O. Soo, W. S. Wong, C. K. Lee et al., Use of convalescent plasma therapy in SARS patients in Hong Kong, Eur. J. Clin. Microbiol. Infect. Dis, vol.24, pp.44-46, 2005.

K. Duan, B. Liu, C. Li, H. Zhang, T. Yu et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients, Proc. Natl. Acad. Sci. USA 2020

F. Amanat, T. Nguyen, V. Chromikova, S. Strohmeier, D. Stadlbauer et al., A serological assay to detect SARS-CoV-2 seroconversion in humans, vol.2020

X. Chen, R. Li, Z. Pan, C. Qian, Y. Yang et al., Human monoclonal antibodies block the binding of SARS-CoV-2 Spike protein to angiotensin converting enzyme 2. medRxiv 2020

A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. Mcguire et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, vol.181, pp.281-292, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02546518

M. Letko, A. Marzi, and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat. Microbiol, vol.5, pp.562-569, 2020.

S. Fukushi, T. Mizutani, M. Saijo, S. Matsuyama, N. Miyajima et al., Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein, J. Gen. Virol, vol.86, pp.2269-2274, 2005.

N. J. Temperton, P. K. Chan, G. Simmons, M. C. Zambon, R. S. Tedder et al., Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes, Emerg. Infect. Dis, vol.11, 2005.

G. Carnell, K. Grehan, F. Ferrara, E. Molesti, and N. Temperton, An Optimized Method for the Production Using PEI, Titration and Neutralization of SARS-CoV Spike Luciferase Pseudotypes, vol.7, 2017.

K. X. Yan, W. J. Tan, X. M. Zhang, H. J. Wang, Y. Li et al., Development and application of a safe SARS-CoV neutralization assay based on lentiviral vectors pseudotyped with SARS-CoV spike protein, Bing Du Xue Bao, vol.23, pp.440-446, 2007.

K. Grehan, F. Ferrara, and N. Temperton, An optimised method for the production of MERS-CoV spike expressing viral pseudotypes, vol.2, pp.379-384, 2015.

S. Lester, J. Harcourt, M. Whitt, H. M. Al-abdely, C. M. Midgley et al., Middle East respiratory coronavirus (MERS-CoV) spike (S) protein vesicular stomatitis virus pseudoparticle neutralization assays offer a reliable alternative to the conventional neutralization assay in human seroepidemiological studies, Access Microbiol, vol.9, 2019.

J. Millet and G. Whittaker, Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection, Bio-Protocol, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635110

X. Ou, Y. Liu, X. Lei, P. Li, D. Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun, vol.2020

B. D. Quinlan, H. Mou, L. Zhang, Y. Guo, W. He et al., The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement, vol.2020

H. Xiong, Y. Wu, J. Cao, R. Yang, J. Ma et al., Robust neutralization assay based on SARS-CoV-2 S-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressed BHK21 cells, vol.2020

J. Nie, Q. Li, J. Wu, C. Zhao, H. Hao et al., Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2, Emerg. Microbes Infect, vol.2020, pp.680-686

M. Hoffmann, H. Kleine-weber, S. Schroeder, N. Krüger, T. Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, vol.181, pp.271-280, 2020.

D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, vol.80, issue.2020, pp.1260-1263

X. Tian, C. Li, A. Huang, S. Xia, S. Lu et al., Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody, Emerg. Microbes Infect, vol.2020, pp.382-385

M. Yuan, N. C. Wu, X. Zhu, C. D. Lee, R. T. So et al., A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV

M. G. Joyce, R. S. Sankhala, W. Chen, M. Choe, H. Bai et al., A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein, vol.2020

F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang et al., A new coronavirus associated with human respiratory disease in China, Nature, vol.579, pp.265-269, 2020.

C. E. Mcbride, J. Li, and C. E. Machamer, The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein, J. Virol, vol.81, pp.2418-2428, 2007.

J. Sadasivan, M. Singh, and J. Sarma, Das Cytoplasmic tail of coronavirus spike protein has intracellular targeting signals, J. Biosci, vol.42, pp.231-244, 2017.

T. Giroglou, J. Cinatl, H. Rabenau, C. Drosten, H. Schwalbe et al., Retroviral Vectors Pseudotyped with Severe Acute Respiratory Syndrome Coronavirus S Protein, J. Virol, vol.78, pp.9007-9015, 2004.

C. Schwegmann-weßels, J. Glende, X. Ren, X. Qu, H. Deng et al., Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus, J. Gen. Virol, vol.90, pp.1724-1729, 2009.

M. J. Moore, T. Dorfman, W. Li, S. K. Wong, Y. Li et al., Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2, J. Virol, vol.78, pp.10628-10635, 2004.

W. Jiang, R. Hua, M. Wei, C. Li, Z. Qiu et al., An optimized method for high-titer lentivirus preparations without ultracentrifugation, Sci. Rep, vol.5, 2015.

A. P. Cribbs, A. Kennedy, B. Gregory, and F. M. Brennan, Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells, BMC Biotechnol, vol.13, 2013.

C. Lei, W. Fu, K. Qian, T. Li, S. Zhang et al., Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig, vol.2020

E. M. Bloch, S. Shoham, A. Casadevall, B. S. Sachais, B. Shaz et al., Deployment of convalescent plasma for the prevention and treatment of COVID-19, J. Clin. Investig, 2020.

W. Denning, S. Das, S. Guo, J. Xu, J. C. Kappes et al., Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations, Mol. Biotechnol, vol.53, pp.308-314, 2013.

A. W. Chin, J. T. Chu, M. R. Perera, K. P. Hui, H. Yen et al., Stability of SARS-CoV-2 in different environmental conditions, Lancet Microbe, vol.5247, p.30003, 2020.

W. Wang, Y. Xu, R. Gao, R. Lu, K. Han et al., Detection of SARS-CoV-2 in Different Types of Clinical Specimens, J. Am. Med. Assoc, 2020.

R. Y. Dodd and S. L. Stramer, COVID-19 and Blood Safety: Help with a Dilemma, Transfus. Med. Rev, 2020.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI