R. E. Howes, Global epidemiology of Plasmodium vivax, Am. J. Trop. Med. Hyg, vol.95, pp.15-34, 2016.

J. K. Baird, Neglect of Plasmodium vivax malaria, Trends Parasitol, vol.23, pp.533-539, 2007.

M. V. Lacerda, Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: To what extent does this parasite kill?, Clin. Infect. Dis, vol.55, pp.67-74, 2012.

C. Naing, M. A. Whittaker, V. Wai, and J. W. Mak, Is Plasmodium vivax malaria a severe malaria?: A systematic review and meta-analysis, PLoS Negl. Trop. Dis, vol.8, p.3071, 2014.

L. H. Miller, D. I. Baruch, K. Marsh, and O. K. Doumbo, The pathogenic basis of malaria, Nature, vol.415, pp.673-679, 2002.

B. O. Carvalho, On the cytoadhesion of Plasmodium vivax-infected erythrocytes, J. Infect. Dis, vol.202, pp.638-647, 2010.

K. Chotivanich, Plasmodium vivax adherence to placental glycosaminoglycans, PLoS One, vol.7, p.34509, 2012.

B. De and . Salas, Adherence to human lung microvascular endothelial cells (HMVEC-L) of Plasmodium vivax isolates from Colombia, Malar. J, vol.12, p.347, 2013.

H. A. Portillo, A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax, Nature, vol.410, pp.839-842, 2001.

J. M. Carlton, Comparative genomics of the neglected human malaria parasite Plasmodium vivax, Nature, vol.455, pp.757-763, 2008.

H. A. Portillo, The role of the spleen in malaria, Cell. Microbiol, vol.14, pp.343-355, 2012.

C. R. Engwerda, L. Beattie, and F. H. Amante, The importance of the spleen in malaria, Trends Parasitol, vol.21, pp.75-80, 2005.

J. W. Barnwell, R. J. Howard, and L. H. Miller, Altered expression of Plasmodium knowlesi variant antigen on the erythrocyte membrane in splenectomized rhesus monkeys, J. Immunol, vol.128, pp.224-226, 1982.

S. A. Lapp, Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts, PLoS One, vol.8, p.78014, 2013.

M. Hommel, P. H. David, and L. D. Oligino, Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen, J. Exp. Med, vol.157, pp.1137-1148, 1983.

S. M. Handunnetti, K. N. Mendis, and P. H. David, Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types, J. Exp. Med, vol.165, pp.1269-1283, 1987.

C. F. Gilks, D. Walliker, and C. I. Newbold, Relationships between sequestration, antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi-a rodent malaria model, Parasite Immunol, vol.12, pp.45-64, 1990.

M. Demar, E. Legrand, D. Hommel, P. Esterre, and B. Carme, Plasmodium falciparum malaria in splenectomized patients: Two case reports in French Guiana and a literature review, Am. J. Trop. Med. Hyg, vol.71, pp.290-293, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00590993

A. Bachmann, Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient, PLoS One, vol.4, p.7459, 2009.

S. Looareesuwan, P. Suntharasamai, H. K. Webster, and M. Ho, Malaria in splenectomized patients: Report of four cases and review, Clin. Infect. Dis, vol.16, pp.361-366, 1993.

K. Chotivanich, Parasite multiplication potential and the severity of Falciparum malaria, J. Infect. Dis, vol.181, pp.1206-1209, 2000.

C. Fernandez-becerra, Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily, Trends Parasitol, vol.25, pp.44-51, 2009.

M. Bernabeu, Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor, Cell. Microbiol, vol.14, pp.386-400, 2012.

A. G. Maier, Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface, Blood, vol.109, pp.1289-1297, 2007.

V. Kumar, PHISTc protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1, FEBS J, vol.285, pp.294-312, 2018.

E. Rui, Plasmodium vivax: Comparison of immunogenicity among proteins expressed in the cell-free systems of Escherichia coli and wheat germ by suspension array assays, Malar. J, vol.10, p.192, 2011.

P. A. Nogueira, A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1, Infect. Immun, vol.74, pp.2726-2733, 2006.

I. Betuela, Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 1-5 years of age, J. Infect. Dis, vol.206, pp.1771-1780, 2012.

S. J. Westenberger, A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito, PLoS Negl. Trop. Dis, vol.4, p.653, 2010.

Z. Bozdech, The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.16290-16295, 2008.

P. A. Boopathi, Revealing natural antisense transcripts from Plasmodium vivax isolates: Evidence of genome regulation in complicated malaria, Infect. Genet. Evol, vol.20, pp.428-443, 2013.

A. Kim, Characterization of P. vivax blood stage transcriptomes from field isolates reveals similarities among infections and complex gene isoforms, Sci. Rep, vol.7, p.7761, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01625796

L. Zhu, New insights into the Plasmodium vivax transcriptome using RNA-Seq, Sci. Rep, vol.6, p.20498, 2016.

A. Kim, J. Popovici, D. Menard, and D. Serre, Plasmodium vivax transcriptomes reveal stage-specific chloroquine response and differential regulation of male and female gametocytes, Nat. Commun, vol.10, p.371, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02558688

T. Tsuboi, S. Takeo, T. U. Arumugam, H. Otsuki, and M. Torii, The wheat germ cell-free protein synthesis system: A key tool for novel malaria vaccine candidate discovery, Acta Trop, vol.114, pp.171-176, 2010.

F. Lu, Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA), J. Proteomics, vol.102, pp.66-82, 2014.

Q. Wang, Naturally acquired antibody responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-terminal 19 kDa domains in an area of unstable malaria transmission in Southeast Asia, PLoS One, vol.11, p.151900, 2016.

P. Requena, Plasmodium vivax VIR proteins are targets of naturally-acquired antibody and T cell immune responses to malaria in pregnant women, PLoS Negl. Trop. Dis, vol.10, p.5009, 2016.

C. Koepfli, A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children, PLoS Negl. Trop. Dis, vol.7, p.2403, 2013.

I. Mueller, Force of infection is key to understanding the epidemiology of Plasmodium falciparum malaria in Papua New Guinean children, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.10030-10035, 2012.

I. Mueller, Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite, Lancet Infect. Dis, vol.9, pp.555-566, 2009.

J. K. Baird, Evidence and implications of mortality associated with acute Plasmodium vivax malaria, Clin. Microbiol. Rev, vol.26, pp.36-57, 2013.

A. M. Siqueira, Spleen rupture in a case of untreated Plasmodium vivax infection, PLoS Negl. Trop. Dis, vol.6, p.1934, 2012.

M. S. Peterson, MaHPIC Consortium, Plasmodium vivax parasite load is associated with histopathology in Saimiri boliviensis with findings comparable to P vivax pathogenesis in humans, Open Forum Infect. Dis, vol.6, p.21, 2019.

A. Elizalde-torrent, Sudden spleen rupture in a Plasmodium vivax-infected patient undergoing malaria treatment, Malar. J, vol.17, p.79, 2018.

R. S. Lee, A. P. Waters, and J. M. Brewer, A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy, Nat. Commun, vol.9, p.1689, 2018.

B. Baro, Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile, PLoS Negl. Trop. Dis, vol.11, p.5365, 2017.

N. Obaldia, Bone marrow is a major parasite reservoir in Plasmodium vivax infection, MBio, vol.9, pp.625-643, 2018.

L. Martin-jaular, Strain-specific spleen remodelling in Plasmodium yoelii infections in Balb/c mice facilitates adherence and spleen macrophage-clearance escape, Cell. Microbiol, vol.13, pp.109-122, 2011.

, Guide for the Care and Use of Laboratory Animals, 2011.

D. T. Trang, N. T. Huy, T. Kariu, K. Tajima, and K. Kamei, One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells, Malar. J, vol.3, p.7, 2004.

B. W. Silverman, Density Estimation, 1986.

. R-core-team, R: A Language and Environment for Statistical Computing, (R Foundation for Statistical Computing, 2015.

C. Fernandez-becerra, Naturally-acquired humoral immune responses against the N-and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay, Malar. J, vol.9, p.29, 2010.

F. E. Grubbs, Sample criteria for testing outlying observations, Ann. Math. Stat, vol.21, pp.27-58, 1950.