J. G. Magee and A. C. Ward, in Bergey's Manual of Systematic Bacteriology, The Actinobacteria, vol.5, pp.312-375, 2012.

, WHO. Global tuberculosis report, 2014.

C. J. Cambier, S. Falkow, and L. Ramakrishnan, Host evasion and exploitation schemes of Mycobacterium tuberculosis, Cell, vol.159, pp.1497-1509, 2014.

L. Majlessi, R. Prados-rosales, A. Casadevall, and R. Brosch, Release of mycobacterial antigens, Immunol Rev, vol.264, pp.25-45, 2015.

L. Chevalier, F. Cascioferro, A. Majlessi, L. Herrmann, J. L. Brosch et al., Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development, Future Microbiol, vol.9, pp.969-85, 2014.

D. F. Warner, A. Koch, and V. Mizrahi, Diversity and disease pathogenesis in Mycobacterium tuberculosis, Trends Microbiol, vol.23, pp.14-21, 2015.

H. E. Takiff and O. Feo, Clinical value of whole-genome sequencing of Mycobacterium tuberculosis, Lancet Infect Dis, vol.15, pp.1077-1090, 2015.

E. C. Boritsch, A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent, Mol Microbiol, vol.93, pp.835-852, 2014.

A. L. Roux, Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients, J Cyst Fibros, vol.14, pp.63-69, 2015.

J. M. Bryant, Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study, Lancet, vol.381, pp.1551-1560, 2013.

M. L. Aitken, Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center, Am J Respir Crit Care Med, vol.185, pp.231-232, 2012.

A. Pawlik, Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus, Mol. Microbiology, vol.90, pp.612-629, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02618774

J. C. Bakala-n'goma, Mycobacterium abscessus phospholipase C expression is induced during coculture within amoebae and enhances M. abscessus virulence in Mice, Infect Immun, vol.83, pp.780-791, 2015.

B. Springer, L. Stockman, K. Teschner, G. D. Roberts, and E. C. Bottger, Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods, J Clin Microbiol, vol.34, pp.296-303, 1996.

C. Raynaud, Phospholipases C are involved in the virulence of Mycobacterium tuberculosis, Mol Microbiol, vol.45, pp.203-217, 2002.

J. Bakala-n'goma, C. Schue, M. Carriere, F. Geerlof, A. Canaan et al., Evidence for the cytotoxic effects of Mycobacterium tuberculosis phospholipase C towards macrophages, Biochim Biophys Acta, vol.1801, pp.1305-1313, 2010.

S. M. Hingley-wilson, V. K. Sambandamurthy, W. R. Jacobs, and . Jr, Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis, Nat Immunol, vol.4, pp.949-955, 2003.

M. Niederweis, Nutrient acquisition by mycobacteria, Microbiology, vol.154, pp.679-692, 2008.

L. S. Ligon, J. D. Hayden, and M. Braunstein, The ins and outs of Mycobacterium tuberculosis protein export, Tuberculosis (Edinb), vol.92, pp.121-132, 2012.

R. W. Titball, Bacterial phospholipases C, Microbiol. Rev, vol.57, pp.347-366, 1993.

M. M. Awad, D. M. Ellemor, R. L. Boyd, J. J. Emmins, and J. I. Rood, Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene, Infect Immun, vol.69, pp.7904-7910, 2001.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc Natl Acad Sci, vol.108, 2011.

, Scientific RepoRts |, vol.5

R. Simeone, Cytosolic access of Mycobacterium tuberculosis: Critical impact of phagosomal acidification control and demonstration of ccurrence in vivo, PLoS Pathog, vol.11, 2015.

R. Simeone, Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS Pathog, vol.8, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

S. T. Cole, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

R. Brosch, Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain, Infect Immun, vol.67, pp.5768-5774, 1999.

S. V. Gordon, Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays, Mol Microbiol, vol.32, pp.643-656, 1999.

T. B. Ho, B. D. Robertson, G. M. Taylor, R. J. Shaw, and D. B. Young, Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates, Yeast, vol.17, pp.272-282, 2000.

C. Manca, Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates, J Immunol, vol.162, pp.6740-6746, 1999.

J. C. Kessel and G. F. Hatfull, Recombineering in Mycobacterium tuberculosis, Nat Methods, vol.4, pp.147-152, 2007.

M. K. Chaveroche, J. M. Ghigo, and C. Enfert, A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans, Nucleic Acids Res, vol.28, 2000.

F. C. Bange, F. M. Collins, W. R. Jacobs, and . Jr, Survival of mice infected with Mycobacterium smegmatis containing large DNA fragments from Mycobacterium tuberculosis, Tuber Lung Dis, vol.79, pp.171-180, 1999.

T. Hsu, The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue, Proc Natl Acad Sci, vol.100, pp.12420-12425, 2003.

X. Charpentier and E. Oswald, Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter, J Bacteriol, vol.186, pp.5486-5495, 2004.

K. Nothelfer, C. Dias-rodrigues, A. Bobard, A. Phalipon, and J. Enninga, Monitoring Shigella flexneri vacuolar escape by flow cytometry, Virulence, vol.2, pp.54-57, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01899485

D. Houben, ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria, Cell Microbiol, vol.14, pp.1287-1298, 2012.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, and S. T. Cole, Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Mol Microbiol, vol.46, pp.709-717, 2002.

D. Bottai, Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system, Vaccine, vol.33, pp.2710-2718, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01182937

V. D. Shortridge, A. Lazdunski, and M. L. Vasil, Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa, Mol Microbiol, vol.6, pp.863-871, 1992.

D. H. Schmiel and V. L. Miller, Bacterial phospholipases and pathogenesis, Microbes Infect, vol.1, pp.1103-1112, 1999.

L. Dedieu, C. Serveau-avesque, L. Kremer, and S. Canaan, Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research, Biochimie, vol.95, pp.66-73, 2013.

M. J. Stonehouse, A novel class of microbial phosphocholine-specific phospholipases C, Mol Microbiol, vol.46, pp.661-676, 2002.

D. K. O'brien and S. B. Melville, Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues, Infect Immun, vol.72, pp.5204-5215, 2004.

J. A. Armstrong and P. D. Hart, Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J Exp Med, vol.134, pp.713-740, 1971.

N. Van-der-wel, M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells, Cell, vol.129, pp.1287-1298, 2007.

A. G. Tsolaki, Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains, Proc Natl Acad Sci, vol.101, pp.4865-4870, 2004.

Y. Kong, Distribution of insertion-and deletion-associated genetic polymorphisms among four Mycobacterium tuberculosis phospholipase C genes and associations with extrathoracic tuberculosis: a population-based study, J Clin Microbiol, vol.43, pp.6048-6053, 2005.

C. Viana-niero, P. E. De-haas, D. Van-soolingen, and S. C. Leao, Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates, Microbiology, vol.150, pp.967-978, 2004.

A. Weil, B. B. Plikaytis, W. R. Butler, C. L. Woodley, and T. M. Shinnick, The mtp40 gene is not present in all strains of Mycobacterium tuberculosis, J Clin Microbiol, vol.34, pp.2309-2311, 1996.

C. Viana-niero, Identification of an IS6110 insertion site in plcD, the unique phospholipase C gene of Mycobacterium bovis, J Med Microbiol, vol.55, pp.451-457, 2006.

C. M. Sassetti and E. J. Rubin, Genetic requirements for mycobacterial survival during infection, Proc Natl Acad Sci, vol.100, pp.12989-12994, 2003.

P. Supply, Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis, Nat Genet, vol.45, pp.172-179, 2013.

F. Ripoll, Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus, PLoS One, vol.4, p.5660, 2009.

D. Schnappinger, Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment, J Exp Med, vol.198, pp.693-704, 2003.

A. Speer, Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages, Mol Microbiol, vol.3, p.13073, 2015.

A. Derbise, B. Lesic, D. Dacheux, J. M. Ghigo, and E. Carniel, A rapid and simple method for inactivating chromosomal genes in Yersinia, FEMS Immunol Med Microbiol, vol.38, pp.113-116, 2003.

J. C. Van-kessel, L. J. Marinelli, and G. F. Hatfull, Recombineering mycobacteria and their phages, Nat Rev Microbiol, vol.6, pp.851-857, 2008.

P. Brodin, Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity, J Biol Chem, vol.280, pp.33953-33959, 2005.

L. Majlessi, Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system, J Immunol, vol.174, pp.3570-3579, 2005.

E. J. Munoz-elias and J. D. Mckinney, Mycobacterium tuberculosis isocitrate lyase 1 and 2 are jointly required for in vivo growth and virulence, Nat Med, vol.11, pp.638-644, 2005.