T. Scully, Tuberculosis. Nature, vol.502, issue.7470, p.1, 2013.

. Who, , 2019.

E. C. Boritsch and R. Brosch, Evolution of mycobacterium tuberculosis: new insights into pathogenicity and drug resistance, Microbiol Spectr, vol.4, issue.5, 2016.

D. Brites and S. Gagneux, The nature and evolution of genomic diversity in the mycobacterium tuberculosis complex, Adv Exp Med Biol, vol.1019, pp.1-26, 2017.

M. Pai, M. A. Behr, and D. Dowdy, Nat Rev Dis Primers, vol.2, p.16076, 2016.

K. M. Malone and S. V. Gordon, Mycobacterium tuberculosis complex members adapted to wild and domestic animals, Adv Exp Med Biol, vol.1019, pp.135-54, 2017.

R. Brosch, S. V. Gordon, and M. Marmiesse, A new evolutionary scenario for the Mycobacterium tuberculosis complex, Proc Natl Acad Sci, vol.99, issue.6, pp.3684-3693, 2002.

D. Bottai, W. Frigui, and F. Sayes, TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages, Nat Commun, vol.11, issue.1, p.684, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02473990

S. Gagneux, K. Deriemer, and T. Van, Variable host-pathogen compatibility in Mycobacterium tuberculosis, Proc Natl Acad Sci, vol.103, issue.8, pp.2869-73, 2006.

R. Brosch, S. V. Gordon, and T. Garnier, Genome plasticity of BCG and impact on vaccine efficacy, Proc Natl Acad Sci, vol.104, issue.13, pp.5596-601, 2007.

K. N. Lewis, R. Liao, and K. M. Guinn, Deletion of RD1 from Mycobacterium tuberculosis mimics bacille CalmetteÀGuerin attenuation, J Infect Dis, vol.187, issue.1, pp.117-140, 2003.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, and C. St, Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Mol Microbiol, vol.46, issue.3, pp.709-726, 2002.

R. Simeone, A. Bobard, and J. Lippmann, Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS Pathog, vol.8, issue.2, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

N. Van-der-wel, D. Hava, and D. Houben, tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells, Cell, vol.129, issue.7, pp.1287-98, 2007.

M. A. Behr and P. M. Small, A historical and molecular phylogeny of BCG strains, Vaccine, vol.17, issue.7À8, pp.915-937, 1999.

N. Ritz, W. A. Hanekom, R. Robins-browne, W. J. Britton, and N. Curtis, Influence of BCG vaccine strain on the immune response and protection against tuberculosis, FEMS Microbiol Rev, vol.32, issue.5, pp.821-862, 2008.

V. M. Kroesen, J. Madacki, and W. Frigui, Mycobacterial virulence: impact on immunogenicity and vaccine research, F1000 Faculty Rev, vol.8, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02615238

S. B. Sable, J. E. Posey, and T. J. Scriba, Tuberculosis vaccine development: progress in clinical evaluation, Clin Microbiol Rev, vol.33, issue.1, 2019.

A. Arbues, J. I. Aguilo, and J. Gonzalo-asensio, Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials, Vaccine, vol.31, issue.42, pp.4867-73, 2013.

J. Gonzalo-asensio, S. Mostowy, and J. Harders-westerveen, PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence, PLoS One, vol.3, issue.10, p.3496, 2008.

S. B. Walters, E. Dubnau, I. Kolesnikova, F. Laval, M. Daffe et al., The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis, Mol Microbiol, vol.60, issue.2, pp.312-342, 2006.

J. Gonzalo-asensio, W. Malaga, and A. Pawlik, Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator, Proc Natl Acad Sci, vol.111, issue.31, pp.11491-11497, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02325922

L. Solans, J. Gonzalo-asensio, and C. Sala, The PhoP-dependent ncRNA MCR7 modulates the TAT secretion system in Mycobacterium tuberculosis, PLoS Pathog, vol.10, issue.5, p.1004183, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02325930

W. Frigui, D. Bottai, and L. Majlessi, Control of M. tuberculosis ESAT-6 secretion and specific t cell recognition by PhoP, PLoS Pathog, vol.4, issue.2, p.33, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01370872

G. Asensio, J. , M. C. Ferrer, and N. L. , The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis, J Biol Chem, vol.281, issue.3, pp.1313-1319, 2006.

C. Diaz, P. Del-palacio, J. Valero-guillen, and P. L. , Comparative metabolomics between Mycobacterium tuberculosis and the MTBVAC vaccine candidate, ACS Infect Dis, vol.5, issue.8, pp.1317-1343, 2019.

L. R. Camacho, P. Constant, and C. Raynaud, Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier, J Biol Chem, vol.276, issue.23, pp.19845-54, 2001.

J. S. Cox, B. Chen, M. Mcneil, and J. Wr, Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice, Nature, vol.402, issue.6757, pp.79-83, 1999.

E. Infante, L. D. Aguilar, B. Gicquel, and R. H. Pando, Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant, Clin Exp Immunol, vol.141, issue.1, pp.21-29, 2005.

J. Augenstreich, A. Arbues, and R. Simeone, ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis, Cell Microbiol, vol.19, issue.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02326055

J. Gonzalo-asensio, D. Marinova, C. Martin, and N. Aguilo, MTBVAC: attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic, Front Immunol, vol.8, p.1803, 2017.

N. Aguilo, J. Gonzalo-asensio, and S. Alvarez-arguedas, Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis, Nat Commun, vol.8, p.16085, 2017.

D. Aguilar, E. Infante, C. Martin, E. Gormley, B. Gicquel et al., Immunological responses and protective immunity against tuberculosis conferred by vaccination of BALB/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain, Clin Exp Immunol, vol.147, issue.2, pp.330-338, 2007.

P. J. Cardona, J. G. Asensio, and A. Arbues, Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant, Vaccine, vol.27, issue.18, pp.2499-505, 2009.

C. Martin, A. Williams, and R. Hernandez-pando, The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs, Vaccine, vol.24, issue.17, pp.3408-3427, 2006.

F. A. Verreck, R. A. Vervenne, and I. Kondova, 85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques, PLoS One, vol.4, issue.4, p.5264, 2009.

D. Marinova, J. Gonzalo-asensio, N. Aguilo, and C. Martin, MTBVAC from discovery to clinical trials in tuberculosis-endemic countries, Expert Rev Vaccines, vol.16, issue.6, pp.565-76, 2017.

F. Spertini, R. Audran, and R. Chakour, Safety of human immunisation with a liveattenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial, Lancet Respiratory Med, vol.3, issue.12, pp.953-62, 2015.

M. Tameris, H. Mearns, and A. Penn-nicholson, Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial, Lancet Respiratory Med, vol.7, issue.9, pp.757-70, 2019.

H. Alonso, J. I. Aguilo, and S. Samper, Deciphering the role of IS6110 in a highly transmissible Mycobacterium tuberculosis Beijing strain, GC1237, Tuberculosis, vol.91, issue.2, pp.117-143, 2011.

M. Jackson, C. Raynaud, and M. A. Laneelle, Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope, Mol Microbiol, vol.31, issue.5, pp.1573-87, 1999.

S. T. Cole, R. Brosch, and J. Parkhill, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, issue.6685, pp.537-581, 1998.

P. J. Bifani, B. Mathema, and Z. Liu, Identification of a W variant outbreak of Mycobacterium tuberculosis via population-based molecular epidemiology, JAMA, vol.282, issue.24, pp.2321-2328, 1999.

R. Brosch, S. V. Gordon, and A. Billault, Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics, Infect Immun, vol.66, issue.5, pp.2221-2230, 1998.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci, vol.97, issue.12, pp.6640-6645, 2000.

J. C. Van-kessel and G. F. Hatfull, Recombineering in Mycobacterium tuberculosis, Nat Methods, vol.4, issue.2, pp.147-52, 2007.

H. Song and M. Niederweis, Functional expression of the FLP recombinase in Mycobacterium bovis BCG, Gene, vol.399, issue.2, pp.112-121, 2007.

A. M. Abdallah, T. Verboom, and E. M. Weerdenburg, PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX

, Mol Microbiol, vol.73, issue.3, pp.329-369, 2009.

L. S. Ates, F. Sayes, and W. Frigui, RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection, PLoS Pathog, vol.14, issue.6, p.1007139, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046090

M. Merker, C. Blin, and S. Mona, Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage, Nat Genet, vol.47, issue.3, pp.242-251, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01153552

L. Solans, N. Aguilo, and S. Samper, A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WHIB6 as a novel ESX-1 component, Infect Immun, vol.82, issue.8, pp.3446-56, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02618736

P. S. Renshaw, P. Panagiotidou, and A. Whelan, Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence, J Biol Chem, vol.277, issue.24, pp.21598-603, 2002.

L. S. Ates, A. Dippenaar, and R. Ummels, Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis, Nat Microbiol, vol.3, issue.2, pp.181-189, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046016

C. R. Mcevoy, P. D. Van-helden, R. M. Warren, G. Van-pittius, and N. C. , Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region, BMC Evol Biol, vol.9, p.237, 2009.

, WHO. WHO end TB strategy. World Health Organization, 2015.

M. I. Groschel, F. Sayes, and S. J. Shin, Recombinant BCG expressing ESX-1 of mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection, Cell Rep, vol.18, issue.11, pp.2752-65, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01503927

J. I. Moliva, A. P. Hossfeld, and S. Sidiki, Selective delipidation of Mycobacterium bovis BCG enables direct pulmonary vaccination and enhances protection against Mycobacterium tuberculosis, Mucosal Immunol, vol.12, issue.3, pp.805-820, 2019.

F. Levillain, H. Kim, W. Kwon, and K. , Preclinical assessment of a new live attenuated Mycobacterium tuberculosis Beijing-based vaccine for tuberculosis, 2019.

P. Constant, E. Perez, and W. Malaga, Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene, J Biol Chem, vol.277, issue.41, pp.38148-58, 2002.

M. B. Reed, P. Domenech, and C. Manca, A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response, Nature, vol.431, issue.7004, pp.84-91, 2004.

L. Zhang, H. W. Ru, and F. Z. Chen, Variable virulence and efficacy of bcg vaccine strains in mice and correlation with genome polymorphisms, Mol Therapy, vol.24, issue.2, pp.398-405, 2016.

I. Parwati, R. Van-crevel, and D. Van-soolingen, Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains, Lancet Infectious Dis, vol.10, issue.2, pp.103-114, 2010.

M. Hanekom, G. Van-pittius, N. C. Mcevoy, C. Victor, T. C. Van-helden et al., Mycobacterium tuberculosis Beijing genotype: a template for success, Tuberculosis, vol.91, issue.6, pp.510-533, 2011.