, World Health Organization, 2015.

E. Dumas, E. Boritsch, M. V. , R. De-la, R. Vega et al., Mycobacterial pangenome analysis suggests important role of plasmids in the radiation of type VII secretion systems
URL : https://hal.archives-ouvertes.fr/hal-01291528

, Genome Biol Evol, 2016.

L. Majlessi, R. Prados-rosales, A. Casadevall, and R. Brosch, Release of mycobacterial antigens. Immunological reviews, vol.264, pp.25-45, 2015.

A. S. Pym, P. Brodin, L. Majlessi, R. Brosch, C. Demangel et al., Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nature medicine, vol.9, issue.5, pp.533-542, 2003.

F. Sayes, L. Sun, D. Luca, M. Simeone, R. Degaiffier et al., Strong immunogenicity and crossreactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential, Cell host & microbe, vol.11, issue.4, pp.352-63, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01104794

K. A. Sweeney, D. N. Dao, M. F. Goldberg, T. Hsu, M. M. Venkataswamy et al., A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis, Nature medicine, vol.17, issue.10, pp.1261-1269, 2011.

D. Bottai, W. Frigui, S. Clark, E. Rayner, A. Zelmer et al., Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system, Vaccine, vol.33, issue.23, pp.2710-2718, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01182937

L. Majlessi, P. Brodin, R. Brosch, M. J. Rojas, H. Khun et al., Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system, Journal of immunology, vol.174, issue.6, pp.3570-3579, 2005.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, and C. St, Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Molecular microbiology, vol.46, issue.3, pp.709-726, 2002.

D. Bottai, D. Luca, M. Majlessi, L. Frigui, W. Simeone et al., Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation, Molecular microbiology, vol.83, issue.6, pp.1195-209, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02615214

M. J. Brennan and G. Delogu, The PE multigene family: a 'molecular mantra' for mycobacteria, Trends Microbiol, vol.10, issue.5, pp.246-255, 2002.

D. Bottai, R. Brosch, P. E. Mycobacterial, and . Clusters, novel insights into the secretion of these most unusual protein families, Molecular microbiology, vol.73, issue.3, pp.325-333, 2009.

N. C. Gey-van-pittius, S. L. Sampson, H. Lee, Y. Kim, P. D. Van-helden et al., Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions, BMC Evol Biol, vol.6, p.95, 2006.

S. L. Sampson, Mycobacterial PE/PPE Proteins at the Host-Pathogen Interface, Clinical & Developmental Immunology, p.497203, 2011.

S. L. Sampson, P. Lukey, R. M. Warren, P. D. Van-helden, M. Richardson et al., Expression, characterization and subcellular localization of the Mycobacterium tuberculosis PPE gene Rv1917c. Tuberculosis, vol.81, pp.305-322, 2001.

Y. Li, E. Miltner, M. Wu, M. Petrofsky, and L. E. Bermudez, A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice, Cellular microbiology, vol.7, issue.4, pp.539-587, 2005.

M. J. Brennan, G. Delogu, Y. Chen, S. Bardarov, J. Kriakov et al., Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells, Infect Immun, vol.69, issue.12, pp.7326-7359, 2001.

R. M. Goldstone, S. D. Goonesekera, B. R. Bloom, and S. L. Sampson, The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence, Infect Immun, vol.77, issue.10, pp.4654-67, 2009.

P. Brodin, Y. Poquet, F. Levillain, I. Peguillet, G. Larrouy-maumus et al., High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling, PLoS pathogens, vol.6, issue.9, p.1001100, 2010.

D. Dong, D. Wang, M. Li, H. Wang, J. Yu et al., PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence, Infect Immun, vol.80, issue.1, pp.43-54, 2012.

R. Iantomasi, M. Sali, A. Cascioferro, I. Palucci, A. Zumbo et al., PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis, Cellular microbiology, vol.14, issue.3, pp.356-67, 2012.

R. Copin, M. Coscolla, S. N. Seiffert, G. Bothamley, J. Sutherland et al., Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition, mBio, vol.5, issue.1, pp.960-973, 2014.

A. M. Abdallah, T. Verboom, F. Hannes, M. Safi, M. Strong et al., A specific secretion system mediates PPE41 transport in pathogenic mycobacteria, Molecular microbiology, vol.62, issue.3, pp.667-79, 2006.

A. M. Abdallah, T. Verboom, E. M. Weerdenburg, G. Van-pittius, N. C. Mahasha et al., PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system CD4 + T-Cell Responses to PE/PPE Protect against, Tuberculosis PLOS Pathogens, 2016.

. Esx-5, Molecular microbiology, vol.73, issue.3, pp.329-369, 2009.

H. M. Vordermeier, R. G. Hewinson, R. J. Wilkinson, K. A. Wilkinson, H. P. Gideon et al., Conserved immune recognition hierarchy of mycobacterial PE/PPE proteins during infection in natural hosts, PloS one, vol.7, issue.8, p.22870206, 2012.

S. Fishbein, N. Van-wyk, R. M. Warren, and S. L. Sampson, Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity, Molecular microbiology, vol.96, issue.5, pp.901-917, 2015.

E. K. Forbes, C. Sander, E. O. Ronan, H. Mcshane, A. V. Hill et al., high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice, Journal of immunology, vol.181, issue.7, pp.4955-64, 2008.

N. Caccamo and F. Dieli, Are Polyfunctional Cells Protective in M. tuberculosis Infection?, Understanding Tuberculosis-Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity. Dr Pere-Joan Cardona

A. C. Collins, H. Cai, T. Li, L. H. Franco, X. D. Li et al., Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis, Cell host & microbe, vol.17, issue.6, pp.820-828, 2015.

L. Majlessi and R. Brosch, Mycobacterium tuberculosis Meets the Cytosol: The Role of cGAS in Anti-mycobacterial Immunity, Cell host & microbe, vol.17, issue.6, pp.733-738, 2015.

R. Wassermann, M. F. Gulen, C. Sala, S. G. Perin, Y. Lou et al., Mycobacterium tuberculosis Differentially Activates cGAS-and Inflammasome-Dependent Intracellular Immune Responses through ESX-1, Cell host & microbe, vol.17, issue.6, pp.799-810, 2015.

R. O. Watson, S. L. Bell, D. A. Macduff, J. M. Kimmey, E. J. Diner et al., The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy, Cell host & microbe, vol.17, issue.6, pp.811-820, 2015.

A. M. Abdallah, N. C. Gey-van-pittius, P. A. Champion, J. Cox, J. Luirink et al., Type VII secretion system of mycobacteria show the way, Nat Rev Microbiol, vol.5, issue.11, pp.883-91, 2007.

R. Simeone, D. Bottai, and R. Brosch, ESX/type VII secretion systems and their role in host-pathogen interaction, Curr Opin Microbiol, vol.12, issue.1, pp.4-10, 2009.

C. S. Lindestam-arlehamn, A. Gerasimova, F. Mele, R. Henderson, J. Swann et al., Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset, PLoS pathogens, vol.9, issue.1, p.1003130, 2013.

L. D. Jasenosky, T. J. Scriba, W. A. Hanekom, and A. E. Goldfeld, T cells and adaptive immunity to Mycobacterium tuberculosis in humans, Immunological reviews, vol.264, issue.1, pp.74-87, 2015.

R. T. Robinson, I. M. Orme, and A. M. Cooper, The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression, Immunological reviews, vol.264, issue.1, pp.46-59, 2015.

S. Sakai, K. D. Kauffman, M. A. Sallin, A. H. Sharpe, H. A. Young et al., CD4 T Cell-Derived IFNgamma Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease, PLoS pathogens, vol.12, issue.5, p.1005667, 2016.

I. V. Lyadova, S. Oberdorf, M. A. Kapina, A. S. Apt, S. L. Swain et al., CD4 T cells producing IFN-gamma in the lungs of mice challenged with mycobacteria express a CD27-negative phenotype, Clinical and experimental immunology, vol.138, issue.1, pp.21-30, 2004.

P. Brodin, I. Rosenkrands, P. Andersen, S. T. Cole, and R. Brosch, ESAT-6 proteins: protective antigens and virulence factors?, Trends Microbiol, vol.12, issue.11, pp.500-508, 2004.

L. Zhang, H. W. Ru, F. Z. Chen, C. Y. Jin, R. F. Sun et al., Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation With Genome Polymorphisms. Molecular therapy: the journal of the, American Society of Gene Therapy, vol.24, issue.2, pp.398-405, 2016.

D. Bottai and R. Brosch, The BCG Strain Pool: Diversity Matters. Molecular therapy: the journal of the American Society of Gene Therapy, vol.24, pp.201-204, 2016.

K. A. Millington, S. M. Fortune, J. Low, A. Garces, S. M. Hingley-wilson et al., Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.14, pp.5730-5735, 2011.

T. Fernandes-alnemri, J. W. Yu, P. Datta, J. Wu, and E. S. Alnemri, AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA, Nature, vol.458, issue.7237, pp.509-522, 2009.

V. Hornung, A. Ablasser, M. Charrel-dennis, F. Bauernfeind, G. Horvath et al., AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC, Nature, vol.458, issue.7237, pp.514-522, 2009.

R. Simeone, A. Bobard, J. Lippmann, W. Bitter, L. Majlessi et al., Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS pathogens, vol.8, issue.2, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

R. Simeone, F. Sayes, O. Song, M. I. Groschel, P. Brodin et al., Cytosolic Access of Mycobacterium tuberculosis: Critical Impact of Phagosomal Acidification Control and Demonstration of Occurrence In Vivo, PLoS pathogens, vol.11, issue.2, p.1004650, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02615223

A. Kupz, U. Zedler, M. Staber, C. Perdomo, A. Dorhoi et al., ESAT-6-dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo, J Clin Invest, vol.126, issue.6, pp.2109-2131, 2016.

P. C. Beverley, S. Sridhar, A. Lalvani, and E. Z. Tchilian, Harnessing local and systemic immunity for vaccines against tuberculosis, Mucosal immunology, vol.7, issue.1, pp.20-26, 2014.

H. Dong, O. Stanek, F. R. Salvador, U. Langer, E. Morillon et al., Induction of protective immunity against Mycobacterium tuberculosis by delivery of ESX antigens into airway dendritic cells, Mucosal immunology, vol.6, issue.3, pp.522-556, 2013.

G. Kallenius, A. Pawlowski, P. Brandtzaeg, and S. Svenson, Should a new tuberculosis vaccine be administered intranasally?, Tuberculosis, vol.87, issue.4, pp.257-66, 2007.

S. Sakai, K. D. Kauffman, J. M. Schenkel, C. C. Mcberry, K. D. Mayer-barber et al., Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells, Journal of immunology, vol.192, issue.7, pp.2965-2974, 2014.

G. A. De-souza, N. A. Leversen, H. Malen, and H. G. Wiker, Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway, Journal of proteomics, vol.75, issue.2, pp.502-512, 2011.

M. G. Chaitra, M. S. Shaila, and R. Nayak, Evaluation of T-cell responses to peptides with MHC class I-binding motifs derived from PE_PGRS 33 protein of Mycobacterium tuberculosis, J Med Microbiol, vol.56, pp.466-74, 2007.

M. G. Chaitra, M. S. Shaila, and R. Nayak, Detection of interferon gamma-secreting CD8+ T lymphocytes in humans specific for three PE/PPE proteins of Mycobacterium tuberculosis, Microbes Infect, vol.10, issue.8, pp.858-67, 2008.

M. G. Chaitra, M. S. Shaila, and R. Nayak, Characterization of T-cell immunogenicity of two PE/PPE proteins of Mycobacterium tuberculosis, J Med Microbiol, vol.57, pp.1079-86, 2008.

R. K. Choudhary, S. Mukhopadhyay, P. Chakhaiyar, N. Sharma, K. J. Murthy et al., PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response, Infect Immun, vol.71, issue.11, pp.6338-6381, 2003.

G. Delogu and M. J. Brennan, Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis, Infect Immun, vol.69, issue.9, pp.5606-5617, 2001.

M. I. Voskuil, D. Schnappinger, R. Rutherford, Y. Liu, and G. K. Schoolnik, Regulation of the Mycobacterium tuberculosis PE/PPE genes, Tuberculosis, vol.84, issue.3-4, pp.256-62, 2004.

S. Commandeur, M. Y. Lin, K. E. Van-meijgaarden, A. H. Friggen, K. L. Franken et al., Doubleand monofunctional CD4(+) and CD8(+) T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals, European journal of immunology, vol.41, issue.10, pp.2925-2961, 2011.

J. S. Sutherland, I. M. Adetifa, P. C. Hill, R. A. Adegbola, and M. O. Ota, Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease, European journal of immunology, vol.39, issue.3, pp.723-732, 2009.

B. M. Kagina, B. Abel, T. J. Scriba, E. J. Hughes, A. Keyser et al., Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns. American journal of respiratory and critical care medicine, vol.182, pp.1073-1082, 2010.

A. Harari, V. Rozot, B. Enders, F. Perreau, M. Stalder et al., Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease, Nature medicine, vol.17, issue.3, pp.372-378, 2011.

C. Aagaard, T. Hoang, J. Dietrich, P. J. Cardona, A. Izzo et al., A multistage tuberculosis vaccine that confers efficient protection before and after exposure, Nature medicine, vol.17, issue.2, pp.189-94, 2011.

J. Dietrich, C. Andersen, R. Rappuoli, T. M. Doherty, C. G. Jensen et al., Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity, Journal of immunology, vol.177, issue.9, pp.6353-60, 2006.

T. Lindenstrom, E. M. Agger, K. S. Korsholm, P. A. Darrah, C. Aagaard et al., Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells, Journal of immunology, vol.182, issue.12, pp.8047-55, 2009.

E. M. Agger, I. Rosenkrands, A. W. Olsen, G. Hatch, A. Williams et al., Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31, Vaccine, vol.24, issue.26, pp.5452-60, 2006.

P. L. Lin, J. Dietrich, E. Tan, R. M. Abalos, J. Burgos et al., The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection, J Clin Invest, vol.122, issue.1, pp.303-317, 2012.

A. W. Olsen, A. Williams, L. M. Okkels, G. Hatch, and P. Andersen, Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model, Infect Immun, vol.72, issue.10, pp.6148-50, 2004.

H. Saiga, N. Nieuwenhuizen, M. Gengenbacher, A. B. Koehler, S. Schuerer et al., The Recombinant BCG DeltaureC::hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation, J Infect Dis, vol.211, issue.11, pp.1831-1872, 2015.

A. M. Abdallah, J. Bestebroer, N. D. Savage, K. De-punder, M. Van-zon et al., Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation, Journal of immunology, vol.187, issue.9, pp.4744-53, 2011.

A. M. Cooper, K. D. Mayer-barber, and A. Sher, Role of innate cytokines in mycobacterial infection, Mucosal immunology, vol.4, issue.3, pp.252-60, 2011.

K. B. Walker, M. J. Brennan, M. M. Ho, J. Eskola, G. Thiry et al., The second Geneva Consensus: Recommendations for novel live TB vaccines, Vaccine, vol.28, issue.11, 2010.