A. M. Abdallah, N. C. Gey-van-pittius, P. A. Champion, J. Cox, and J. Luirink, Type VII secretion system of mycobacteria show the way, Nat Rev Microbiol, vol.5, pp.883-891, 2007.

L. Majlessi, R. Prados-rosales, A. Casadevall, and R. Brosch, Release of mycobacterial antigens, Immunol Rev, vol.264, pp.1-21, 2015.

W. Bitter, E. N. Houben, D. Bottai, P. Brodin, and E. J. Brown, Systematic genetic nomenclature for type VII secretion systems, PLoS Pathog, vol.5, p.1000507, 2009.

E. N. Houben, K. V. Korotkov, and W. Bitter, Take five-Type VII secretion systems of mycobacteria, Biochim Biophys Acta, vol.1844, pp.1707-1716, 2014.

J. Gonzalo-asensio, W. Malaga, A. Pawlik, C. Astarie-dequeker, and C. Passemar, Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator, Proc Natl Acad Sci U S A, vol.111, pp.11491-11496, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02325922

P. Supply, M. Marceau, S. Mangenot, D. Roche, and C. Rouanet, Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis, Nat Genet, vol.45, pp.172-179, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02615220

E. C. Boritsch, P. Supply, N. Honore, T. Seeman, and T. P. Stinear, A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent, Mol Microbiol, vol.93, pp.835-852, 2014.

T. P. Stinear, T. Seemann, P. F. Harrison, G. A. Jenkin, and J. K. Davies, Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis, Genome Res, vol.18, pp.729-741, 2008.

M. I. De-jonge, G. Pehau-arnaudet, M. M. Fretz, F. Romain, and D. Bottai, ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity, J Bacteriol, vol.189, pp.6028-6034, 2007.

T. Hsu, S. M. Hingley-wilson, C. B. Chen, M. Dai, and A. Z. , The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue, Proc Natl Acad Sci U S A, vol.100, pp.12420-12425, 2003.

J. Smith, J. Manoranjan, M. Pan, A. Bohsali, and J. Xu, Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole, Infect Immun, vol.76, pp.5478-5487, 2008.

L. M. Stamm, J. H. Morisaki, L. Y. Gao, R. L. Jeng, and K. L. Mcdonald, Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility, J Exp Med, vol.198, pp.1361-1368, 2003.

N. Van-der-wel, D. Hava, D. Houben, D. Fluitsma, and M. Van-zon, ) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells, Cell, vol.129, pp.1287-1298, 2007.

M. Hagedorn, K. H. Rohde, D. G. Russell, and T. Soldati, Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts, Science, vol.323, pp.1729-1733, 2009.

R. Simeone, A. Bobard, J. Lippmann, W. Bitter, and L. Majlessi, Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS Pathog, vol.8, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

D. Houben, C. Demangel, J. Van-ingen, J. Perez, and L. Baldeon, ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria, Cell Microbiol, vol.14, pp.1287-1298, 2012.

S. M. Fortune and E. J. Rubin, The complex relationship between mycobacteria and macrophages: it's not all bliss, Cell Host Microbe, vol.2, pp.5-6, 2007.

M. J. Harriff, G. E. Purdy, and D. M. Lewinsohn, Escape from the phagosome: The explanation for MHC-I processing of mycobacterial antigens?, Front Immunol, vol.3, p.40, 2012.

S. Molloy, BACTERIAL PATHOGENESIS TB blurs the lines, Nature Reviews Microbiology, vol.10, pp.442-442, 2012.

N. Friedrich, M. Hagedorn, D. Soldati-favre, and T. Soldati, Prison break: pathogens' strategies to egress from host cells, Microbiol Mol Biol Rev, vol.76, pp.707-720, 2012.

K. Ray, A. Bobard, A. Danckaert, I. Paz-haftel, and C. Clair, Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time, Cell Microbiol, vol.12, pp.545-556, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01899489

A. R. Flores, L. M. Parsons, and M. S. Pavelka, Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics, Microbiology, vol.151, pp.521-532, 2005.

H. Malen, S. Pathak, T. Softeland, G. A. De-souza, and H. G. Wiker, Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv, BMC Microbiol, vol.10, p.132, 2010.

X. Charpentier and E. Oswald, Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter, J Bacteriol, vol.186, pp.5486-5495, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683194

K. Nothelfer, D. Rodrigues, C. Bobard, A. Phalipon, A. Enninga et al., Monitoring Shigella flexneri vacuolar escape by flow cytometry, Virulence, vol.2, pp.54-57, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01899485

L. Majlessi, P. Brodin, R. Brosch, M. J. Rojas, and H. Khun, Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system, J Immunol, vol.174, pp.3570-3579, 2005.

S. M. Behar, M. Divangahi, and H. G. Remold, Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?, Nat Rev Microbiol, vol.8, pp.668-674, 2010.

S. M. Behar, C. J. Martin, M. G. Booty, T. Nishimura, and X. Zhao, Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis, Mucosal Immunol, vol.4, pp.279-287, 2011.

J. Aguilo, H. Alonso, S. Uranga, D. Marinova, and A. Arbues, ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis, Cell Microbiol, vol.15, 1994.

N. Nakamura, J. R. Lill, Q. Phung, Z. Jiang, and C. Bakalarski, Endosomes are specialized platforms for bacterial sensing and NOD2 signalling, Nature, vol.509, pp.240-244, 2014.

G. Ferwerda, S. E. Girardin, B. J. Kullberg, L. Bourhis, L. De-jong et al., NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis, PLoS Pathog, vol.1, pp.279-285, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00080312

A. K. Pandey, Y. Yang, Z. Jiang, S. M. Fortune, and F. Coulombe, NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis, PLoS Pathog, vol.5, p.1000500, 2009.

P. S. Manzanillo, M. U. Shiloh, D. A. Portnoy, and J. S. Cox, Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages, Cell Host Microbe, vol.11, pp.469-480, 2012.

J. Kleinnijenhuis, M. Oosting, L. A. Joosten, and M. G. Netea, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis, Clin Dev Immunol, p.405310, 2011.

S. Shi, A. Blumenthal, C. M. Hickey, S. Gandotra, and D. Levy, Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1, J Immunol, vol.175, pp.3318-3328, 2005.

K. W. Wong and W. R. Jacobs, Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis, Cell Microbiol, vol.13, pp.1371-1384, 2011.

A. Dorhoi, G. Nouailles, S. Jorg, K. Hagens, and E. Heinemann, Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis, Eur J Immunol, vol.42, pp.374-384, 2012.

R. O. Watson, P. S. Manzanillo, and J. S. Cox, Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway, Cell, vol.150, pp.803-815, 2012.

A. Romagnoli, M. P. Etna, E. Giacomini, M. Pardini, and M. E. Remoli, ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells, Autophagy, vol.8, pp.1357-1370, 2012.

A. Sokolovska, C. E. Becker, W. K. Ip, V. A. Rathinam, and M. Brudner, Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function, Nat Immunol, vol.14, pp.543-553, 2013.

I. Cebrian, G. Visentin, N. Blanchard, M. Jouve, and A. Bobard, Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells, Cell, vol.147, pp.1355-1368, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666062

P. Brodin, M. I. De-jonge, L. Majlessi, C. Leclerc, and M. Nilges, Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity, J Biol Chem, vol.280, pp.33953-33959, 2005.

M. Divangahi, M. Chen, H. Gan, D. Desjardins, and T. T. Hickman, Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair, Nat Immunol, vol.10, pp.899-906, 2009.

S. A. Stanley, J. E. Johndrow, P. Manzanillo, and J. S. Cox, The Type I IFN Response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis, J Immunol, vol.178, pp.3143-3152, 2007.

K. K. Conzelmann, Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses, J Virol, vol.79, pp.5241-5248, 2005.

K. D. Mayer-barber, D. L. Barber, K. Shenderov, S. D. White, and M. S. Wilson, Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo, J Immunol, vol.184, pp.3326-3330, 2010.

D. J. Hackam, O. D. Rotstein, W. Zhang, S. Gruenheid, and P. Gros, Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification, J Exp Med, vol.188, pp.351-364, 1998.

M. J. Vidal and P. D. Stahl, The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation, Eur J Cell Biol, vol.60, pp.261-267, 1993.

J. R. Forbes and P. Gros, Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions, Trends Microbiol, vol.9, pp.397-403, 2001.

T. Lang, E. Prina, D. Sibthorpe, and J. M. Blackwell, Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation, Infect Immun, vol.65, pp.380-386, 1997.

L. Y. Gao, S. Guo, B. Mclaughlin, H. Morisaki, and J. N. Engel, A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion, Mol Microbiol, vol.53, pp.1677-1693, 2004.

C. J. Martin, M. G. Booty, T. R. Rosebrock, C. Nunes-alves, and D. M. Desjardins, Efferocytosis is an innate antibacterial mechanism, Cell Host Microbe, vol.12, pp.289-300, 2012.

M. Barel and A. Charbit, Francisella tularensis intracellular survival: To eat or to die, Microbes Infect, vol.25, pp.206-00202, 2013.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc Natl Acad Sci U S A, vol.108, pp.19484-19491, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650692

J. A. Armstrong and P. D. Hart, Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J Exp Med, vol.134, pp.713-740, 1971.

E. S. Leake, Q. N. Myrvik, and M. J. Wright, Phagosomal membranes of Mycobacterium bovis BCG-immune alveolar macrophages are resistant to disruption by Mycobacterium tuberculosis H37Rv, Infect Immun, vol.45, pp.443-446, 1984.

K. A. Mcdonough, Y. Kress, and B. R. Bloom, Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages, Infect Immun, vol.61, pp.2763-2773, 1993.

E. A. Creasey and R. R. Isberg, Maintenance of vacuole integrity by bacterial pathogens, Curr Opin Microbiol, vol.17, pp.46-52, 2014.

Q. N. Myrvik, E. S. Leake, and M. J. Wright, Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. A correlate of virulence, Am Rev Respir Dis, vol.129, pp.322-328, 1984.

T. Yoshimori, A. Yamamoto, Y. Moriyama, M. Futai, and Y. Tashiro, Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells, J Biol Chem, vol.266, pp.17707-17712, 1991.

H. C. Mwandumba, D. G. Russell, M. H. Nyirenda, J. Anderson, and S. A. White, Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV infection, J Immunol, vol.172, pp.4592-4598, 2004.

D. G. Russell, H. C. Mwandumba, and E. E. Rhoades, Mycobacterium and the coat of many lipids, J Cell Biol, vol.158, pp.421-426, 2002.

E. Kondo, T. Yasuda, and K. Kanai, Electron microscopic demonstration of close contact between intracellular mycobacteria and the phagosomal membrane, Jpn J Med Sci Biol, vol.35, pp.197-201, 1982.

J. J. Merckx, A. L. Brown, and A. G. Karlson, An electron-microscopic study of experimental infections with Acid-Fast Bacilli, Am Rev Respir Dis, vol.89, pp.485-496, 1964.

A. L. Moreira, J. Wang, L. Tsenova-berkova, W. Hellmann, and V. H. Freedman, Sequestration of Mycobacterium tuberculosis in tight vacuoles in vivo in lung macrophages of mice infected by the respiratory route, Infect Immun, vol.65, pp.305-308, 1997.

A. S. Pym, P. Brodin, L. Majlessi, R. Brosch, and C. Demangel, Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nat Med, vol.9, pp.533-539, 2003.

P. Brodin, L. Majlessi, R. Brosch, D. Smith, and G. Bancroft, Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens, J Infect Dis, vol.190, pp.115-122, 2004.

J. Rybniker, J. M. Chen, C. Sala, R. C. Hartkoorn, and A. Vocat, Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion, Cell Host Microbe, vol.16, pp.538-548, 2014.

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, and M. Contreras-dominguez, High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, PLoS Pathog, vol.5, p.1000645, 2009.

C. Astarie-dequeker, L. Guyader, L. Malaga, W. Seaphanh, F. K. Chalut et al., Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids, PLoS Pathog, vol.5, p.1000289, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02333313

P. Brodin, Y. Poquet, F. Levillain, I. Peguillet, and G. Larrouy-maumus, High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling, PLoS Pathog, vol.6, p.1001100, 2010.

J. A. Macgurn and J. S. Cox, A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system, Infect Immun, vol.75, pp.2668-2678, 2007.

G. R. Stewart, J. Patel, B. D. Robertson, R. A. Young, and D. B. , Mycobacterial mutants with defective control of phagosomal acidification, PLoS Pathog, vol.1, pp.269-278, 2005.

O. H. Vandal, L. M. Pierini, D. Schnappinger, C. F. Nathan, and S. Ehrt, A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis, Nat Med, vol.14, pp.849-854, 2008.

F. Sayes, L. Sun, D. Luca, M. Simeone, R. Degaiffier et al., Strong immunogenicity and crossreactivity of Mycobacterium tuberculosis ESX-5 type VII secretion-encoded PE-PPE proteins predicts vaccine potential, Cell Host Microbe, vol.11, pp.352-363, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01104794

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.